Deacylated pulmonary surfactant protein SP-C transforms from alpha-helical to amyloid fibril structure via a pH-dependent mechanism: an infrared structural investigation.

نویسندگان

  • Richard A Dluhy
  • Saratchandra Shanmukh
  • J Brian Leapard
  • Peter Krüger
  • John E Baatz
چکیده

Bovine pulmonary surfactant protein C (SP-C) is a hydrophobic, alpha-helical membrane-associated lipoprotein in which cysteines C4 and C5 are acylated with palmitoyl chains. Recently, it has been found that the alpha-helix form of SP-C is metastable, and under certain circumstances may transform from an alpha-helix to a beta-strand conformation that resembles amyloid fibrils. This transformation is accelerated when the protein is in its deacylated form (dSP-C). We have used infrared spectroscopy to study the structure of dSP-C in solution and at membrane interfaces. Our results show that dSP-C transforms from an alpha-helical to a beta-type amyloid fibril structure via a pH-dependent mechanism. In solution at low pH, dSP-C is alpha-helical in nature, but converts to an amyloid fibril structure composed of short beta-strands or beta-hairpins at neutral pH. The alpha-helix structure of dSP-C is fully recoverable from the amyloid beta-structure when the pH is once again lowered. Attenuated total reflectance infrared spectroscopy of lipid-protein monomolecular films showed that the fibril beta-form of dSP-C is not surface-associated at the air-water interface. In addition, the lipid-associated alpha-helix form of dSP-C is only retained at the surface at low surface pressures and dissociates from the membrane at higher surface pressures. In situ polarization modulation infrared spectroscopy of protein and lipid-protein monolayers at the air-water interface confirmed that the residual dSP-C helix conformation observed in the attenuated total reflectance infrared spectra of transferred films is randomly or isotropically oriented before exclusion from the membrane interface. This work identifies pH as one of the mechanistic causes of amyloid fibril formation for dSP-C, and a possible contributor to the pathogenesis of pulmonary alveolar proteinosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Effects of pH and Deacylation on Surfactant Protein C in an Organic Solvent Mixture: A Constant-pH MD Study

The pulmonary surfactant protein C (SP-C) is a small highly hydrophobic protein that adopts a mainly helical structure while associated with the membrane but misfolds into a β-rich metastable structure upon deacylation, membrane dissociation, and exposure to the neutral pH of the aqueous alveolar subphase, eventually leading to the formation of amyloid aggregates associated with pulmonary alveo...

متن کامل

Mutations linked to interstitial lung disease can abrogate anti-amyloid function of prosurfactant protein C.

The newly synthesized proSP-C (surfactant protein C precursor) is an integral ER (endoplasmic reticulum) membrane protein with a single metastable polyvaline alpha-helical transmembrane domain that comprises two-thirds of the mature peptide. More than 20 mutations in the ER-lumenal CTC (C-terminal domain of proSP-C), are associated with ILD (interstitial lung disease), and some of the mutations...

متن کامل

The proteins of the surfactant system.

The structural and functional integrity of pulmonary surfactant depends on several specific proteins. Two of these, SP-A and SP-D, are large and water-soluble, while SP-B and SP-C are small and very hydrophobic. SP-A is an 18-mer of 26 kDa polypeptide chains and contains N-linked oligosaccharides. Structurally, it can be characterized as a collagen/lectin hybrid. Together with SP-B, SP-A is req...

متن کامل

Effect of acidic pH on the structure and lipid binding properties of porcine surfactant protein A. Potential role of acidification along its exocytic pathway.

Pulmonary surfactant protein A (SP-A) is synthesized by type II cells and stored intracellularly in secretory granules (lamellar bodies) together with surfactant lipids and hydrophobic surfactant proteins B and C (SP-B and SP-C). We asked whether the progressive decrease in pH along the exocytic pathway could influence the secondary structure and lipid binding and aggregation properties of porc...

متن کامل

The NMR structure of the pulmonary surfactant-associated polypeptide SP-C in an apolar solvent contains a valyl-rich alpha-helix.

The nuclear magnetic resonance (NMR) structure of the pulmonary surfactant-associated lipoplypeptide C (SP-C) was determined in a mixed solvent of C2H3Cl/C2H3OH/ 1 M HCl 32:64:5 (v/v). Sequence-specific 1H NMR assignments and the collection of conformational constraints were achieved with two-dimensional 1H NMR, and the structure was calculated with the distance geometry program DIANA. The root...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 85 4  شماره 

صفحات  -

تاریخ انتشار 2003