Effects of Li2O Thickness and Moisture Content on LiH Hydrolysis Kinetics in Slightly Humidified Argon
نویسنده
چکیده
The hydrolysis kinetics of polycrystalline lithium hydride (LiH) in argon at various low humidities was measured by gravimetry and Raman spectroscopy with ambient water concentration ranging from 200 to 1200 ppm. The results showed that LiH hydrolysis curve revealed a paralinear shape, which was attributed to two different reaction stages that forming different products as explained by the ‘Layer Diffusion Control’ model. Based on the model, a novel two-stage rate equation for LiH hydrolysis reactions was developed and used to fit the experimental data for determination of Li2O steady thickness Hs and the ultimate hydrolysis rate vs. The fitted data presented a rise of Hs as ambient water concentration cw increased. However, in spite of the negative effect imposed by Hs increasing, the upward trend of vs remained, which implied that water concentration, rather than Li2O thickness, played a predominant role in LiH hydrolysis kinetics. In addition, the proportional relationship between vsHs and cw predicted by rate equation and confirmed by gravimetric data validated the model in such conditions. Keywords—Hydrolysis kinetics, ‘Layer Diffusion Control’ model, Lithium hydride
منابع مشابه
Hydrolysis Characteristics of Polycrystalline Lithium Hydride Powders and Sintered Bulk
Ambient hydrolysis products in moist air and hydrolysis kinetics in argon with humidity of RH1.5% for polycrystalline LiH powders and sintered bulks were investigated by X-ray diffraction, Raman spectroscopy and gravimetry. The results showed that the hydrolysis products made up a layered structure of LiOH•H2O/LiOH/Li2O from surface of the sample to inside. In low humid argon atmosphere, the pr...
متن کاملStability of lithium hydride in argon and air.
The oxidation behaviors of LiH under a high purity argon atmosphere, an argon atmosphere with some O2 and H2O impurities, and ambient air at both room and high temperatures, are investigated using a variety of analytical instruments including X-ray diffractometry, thermogravimetry, mass spectrometry, scanning electron microscopy, and specific surface area analysis. The oxidation behaviors of th...
متن کاملMicrostructure and Properties of Li2O-Al2O3-SiO2-P2O5 Glass-Ceramics
Serials Li2O–Al2O3–SiO2 matrix glasses and glass-ceramics with different content of P2O5 were prepared by conventional melt cooling method and crystallization process. The effects of P2O5 content on microstructure and properties such as viscosity, melting temperature and coefficient of thermal expansion (CTE) of Li2O–Al2O3–SiO2–P2O5 glasses and glass-ceramics were investigated by DSC, XRD, CTE ...
متن کاملAmylase production from Aspergillus oryzae LS1 by solid-state fermentation and its use for the hydrolysis of wheat flour
Nine Aspergillus and three of Trichoderma strains were grown on wheat bran (WB) medium under solid state fermentation (SSF) for amylase production. Aspergillus oryzae LS1 produced the highest level of the enzyme. The thermal stability profile of its crude enzyme revealed the half-life time of more than 2 h at 50 and 60ºC. The enzyme production was affected by strain type, incubation periods, le...
متن کاملHydrolysis of semi mustard (S.M) by MnCo2O4 (MnO-Co2O3) nanocomposite as a binary oxide catalyst: kinetics reactions study
MnCo2O4 (MnO-Co2O3) nanocomposite as a binary oxide has been successfully prepared by precipitation method using cobalt nitrate and manganese nitrate as the precursors and then characterized by scanning electron microscopy-energy dispersive micro-analysis (SEM-EDX) and X-ray diffraction (XRD) techniques. In this work, we report the hydrolysis kinetics reactions of semi mustard (chloroethyl ethy...
متن کامل