A Redundancy-Aware Sentence Regression Framework for Extractive Summarization

نویسندگان

  • Pengjie Ren
  • Furu Wei
  • Zhumin Chen
  • Jun Ma
  • Ming Zhou
چکیده

Existing sentence regression methods for extractive summarization usually model sentence importance and redundancy in two separate processes. They first evaluate the importance f(s) of each sentence s and then select sentences to generate a summary based on both the importance scores and redundancy among sentences. In this paper, we propose to model importance and redundancy simultaneously by directly evaluating the relative importance f(s|S) of a sentence s given a set of selected sentences S. Specifically, we present a new framework to conduct regression with respect to the relative gain of s given S calculated by the ROUGE metric. Besides the single sentence features, additional features derived from the sentence relations are incorporated. Experiments on the DUC 2001, 2002 and 2004 multi-document summarization datasets show that the proposed method outperforms state-of-the-art extractive summarization approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extractive speech summarization - from the view of decision theory

Extractive speech summarization can be thought of as a decision-making process where the summarizer attempts to select a subset of informative sentences from the original document. Meanwhile, a sentence being selected as part of a summary is typically determined by three primary factors: significance, relevance and redundancy. To meet these specifications, we recently presented a novel probabil...

متن کامل

Taking into account Inter-sentence Similarity for Update Summarization

Following Gillick and Favre (2009), a lot of work about extractive summarization has modeled this task by associating two contrary constraints: one aims at maximizing the coverage of the summary with respect to its information content while the other represents its size limit. In this context, the notion of redundancy is only implicitly taken into account. In this article, we extend the framewo...

متن کامل

Event-Based Extractive Summarization

Most approaches to extractive summarization define a set of features upon which selection of sentences is based, using algorithms independent of the features themselves. We propose a new set of features based on low-level, atomic events that describe relationships between important actors in a document or set of documents. We investigate the effect this new feature has on extractive summarizati...

متن کامل

UIDS: A Multilingual Document Summarization Framework Based on Summary Diversity and Hierarchical Topics

In this paper, we put forward UIDS, a new high-performing extensible framework for extractive MultiLingual Document Summarization. Our approach looks on a document in a multilingual corpus as an item sequence set, in which each sentence is an item sequence and each item is the minimal semantic unit. Then we formalize the extractive summary as summary diversity sampling problem that considers to...

متن کامل

Biogeography-Based Optimization Algorithm for Automatic Extractive Text Summarization

    Given the increasing number of documents, sites, online sources, and the users’ desire to quickly access information, automatic textual summarization has caught the attention of many researchers in this field. Researchers have presented different methods for text summarization as well as a useful summary of those texts including relevant document sentences. This study select...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016