Regulators of coastal wetland methane production and responses to simulated global change
نویسندگان
چکیده
Wetlands are the largest natural source of methane (CH4) emissions to the atmosphere, which vary along salinity and productivity gradients. Global change has the potential to reshape these gradients and therefore alter future contributions of wetlands to the global CH4 budget. Our study examined CH4 production along a natural salinity gradient in fully inundated coastal Alaska wetlands. In the laboratory, we incubated natural sediments to compare CH4 production rates between non-tidal freshwater and tidal brackish wetlands, and quantified the abundances of methanogens and sulfate-reducing bacteria in these ecosystems. We also simulated seawater intrusion and enhanced organic matter availability, which we predicted would have contrasting effects on coastal wetland CH4 production. Tidal brackish wetlands produced less CH4 than non-tidal freshwater wetlands probably due to high sulfate availability and generally higher abundances of sulfate-reducing bacteria, whereas non-tidal freshwater wetlands had significantly greater methanogen abundances. Seawater addition experiments with freshwater sediments, however, did not reduce CH4 production, perhaps because the 14-day incubation period was too short to elicit a shift in microbial communities. In contrast, increased organic matter enhanced CH4 production in 75 % of the incubations, but this response depended on the macrophyte species added, with half of the species treatments having no significant effect. Our study suggests that CH4 production in coastal wetlands, and therefore their overall contribution to the global CH4 cycle, will be sensitive to increased organic matter availability and potentially seawater intrusion. To better predict future wetland contributions to the global CH4 budget, future studies and modeling efforts should investigate how multiple global change mechanisms will interact to impact CH4 dynamics.
منابع مشابه
Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations
Methane emissions from natural wetlands and rice paddies constitute a large proportion of atmospheric methane, but the magnitude and year-to-year variation of these methane sources are still unpredictable. Here we describe and evaluate the integration of a methane biogeochemical model (CLM4Me; Riley et al., 2011) into the Community Land Model 4.0 (CLM4CN) in order to better explain spatial and ...
متن کاملChapter 4 IMPACTS ON COASTAL WETLANDS THROUGHOUT THE UNITED STATES
uncertainties inherent in making future projections, the major factors controlling wetland sea level responses can be modeled. This chapter considers possible coastal wetland responses to future sea level rise in the conterminous United States, in order to provide information needed to understand future threats to coastal resources during an anticipated period of unprecedented climatic change. ...
متن کاملMethane production potential and emission at different water levels in the restored reed wetland of Hangzhou Bay
Changes in the hydrological conditions of coastal wetlands may potentially affect the role of wetlands in the methane (CH4) cycle. In this study, the CH4 production potential and emissions from restored coastal reed wetlands at different water levels were examined in eastern China at a field scale in two phenological seasons. Results showed that the total CH4 flux from reeds at various water le...
متن کاملWarmer temperature accelerates methane emissions from the Zoige wetland on the Tibetan Plateau without changing methanogenic community composition
Zoige wetland, locating on the Tibet Plateau, accounts for 6.2% of organic carbon storage in China. However, the fate of the organic carbon storage in the Zoige wetland remains poorly understood despite the Tibetan Plateau is very sensitive to global climate change. As methane is an important greenhouse gas and methanogenesis is the terminal step in the decomposition of organic matter, understa...
متن کاملDetermination of Methane Oxidation in the Rhizosphere of Sagittaria landfolia Using Methyl Fluoride
Methane oxidation in the rhizosphere of wetland plants may significantly attenuate methane losses from wetland soils to the atmosphere. Our objective was to measure the extent of methane production and oxidation in the rhizosphere of a common wetland plant (Sagittaria landfolia L. Per.). Methyl fluoride (CH3F), a water-soluble gas and a specific inhibitor of methane oxidation, was used in conju...
متن کامل