Wavelet Transform and Support Vector Machine Approach for Fault Location in Power Transmission Line
نویسندگان
چکیده
This paper presents a wavelet transform and Support Vector Machine (SVM) based algorithm for estimating fault location on transmission lines. The Discrete wavelet transform (DWT) is used for data pre-processing and this data are used for training and testing SVM. Five types of mother wavelet are used for signal processing to identify a suitable wavelet family that is more appropriate for use in estimating fault location. The results demonstrated the ability of SVM to generalize the situation from the provided patterns and to accurately estimate the location of faults with varying fault resistance. Keywords— Fault location, support vector machine, support vector regression, transmission lines, wavelet transform.
منابع مشابه
Using Wavelet Support Vector Machine for Fault Diagnosis of Gearboxes
Identifying fault categories, especially for compound faults, is a challenging task in mechanical fault diagnosis. For this task, this paper proposes a novel intelligent method based on wavelet packet transform (WPT) and multiple classifier fusion. An unexpected damage on the gearbox may break the whole transmission line down. It is therefore crucial for engineers and researchers to monitor the...
متن کاملShort Circuit Fault Classification and Location in Transmission Lines Using A Combination of Wavelet Transform and Support Vector Machines
In this paper, a modern synthetic framework which has the capability to rapidly Classify and locate short circuit faults over transmission lines is presented. The proposed algorithm singles out short circuit faults based on the measured voltage waveform and three-phase current when fault events occur in power transmission lines. The values resulting from the three-phase currents and the three-p...
متن کاملFault location in transmission lines based on stationary wavelet transform, determinant function feature and support vector regression
This paper proposes a novel transmission line fault location scheme, combining stationary wavelet transform (SWT), determinant function feature (DFF), support vector machine (SVM) and support vector regression (SVR). Various types of faults at different locations, fault impedance and fault inception angles on a 400 kV, 361.297 km transmission line are investigated. The system only utilizes sing...
متن کاملFault Detection and Classification in Double-Circuit Transmission Line in Presence of TCSC Using Hybrid Intelligent Method
In this paper, an effective method for fault detection and classification in a double-circuit transmission line compensated with TCSC is proposed. The mutual coupling of parallel transmission lines and presence of TCSC affect the frequency content of the input signal of a distance relay and hence fault detection and fault classification face some challenges. One of the most effective methods fo...
متن کاملFault location and classification in non-homogeneous transmission line utilizing breaker transients
In this paper, a single-ended fault location method is presented based on a circuit breaker operation using the frequencies of traveling waves. The proposed method receives the required data from voltage traveling waves with the aid of Fast Fourier Transform (FFT) and Wavelet Transform. Then, the Artificial Neural Network (ANN) identifies fault type and determines its location. In order to eval...
متن کامل