LPI Optimization Framework for Radar Network Based on Minimum Mean-Square Error Estimation

نویسندگان

  • Ji She
  • Jianjiang Zhou
  • Fei Wang
  • Hailin Li
چکیده

This paper presents a novel low probability of intercept (LPI) optimization framework in radar network by minimizing the Schleher intercept factor based on minimum mean-square error (MMSE) estimation. MMSE of the estimate of the target scatterer matrix is presented as a metric for the ability to estimate the target scattering characteristic. The LPI optimization problem, which is developed on the basis of a predetermined MMSE threshold, has two variables, including transmitted power and target assignment index. We separated power allocation from target assignment through two sub-problems. First, the optimum power allocation is obtained for each target assignment scheme. Second, target assignment schemes are selected based on the results of power allocation. The main problem of this paper can be considered in the point of views based on two cases, including single radar assigned to each target and two radars assigned to each target. According to simulation results, the proposed algorithm can effectively reduce the total Schleher intercept factor of a radar network, which can make a great contribution to improve the LPI performance of a radar network.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Sensor Selection and Power Allocation Algorithm for Multiple-Target Tracking in an LPI Radar Network

Radar networks are proven to have numerous advantages over traditional monostatic and bistatic radar. With recent developments, radar networks have become an attractive platform due to their low probability of intercept (LPI) performance for target tracking. In this paper, a joint sensor selection and power allocation algorithm for multiple-target tracking in a radar network based on LPI is pro...

متن کامل

Volumetric soil moisture estimation using Sentinel 1 and 2 satellite images

Surface soil moisture is an important variable that plays a crucial role in the management of water and soil resources. Estimating this parameter is one of the important applications of remote sensing. One of the remote sensing techniques for precise estimation of this parameter is data-driven models. In this study, volumetric soil moisture content was estimated using data-driven models, suppor...

متن کامل

A Centralized Processing Framework for Foliage- Penetration Human Tracking in Multistatic Radar

A complete centralized processing framework is proposed for human tracking using multistatic radar in the foliage-penetration environment. The configuration of the multistatic radar system is described. Primary attention is devoted to time of arrival (TOA) estimation and target localization. An improved approach that takes the geometrical center as the TOA estimation of the human target is give...

متن کامل

Optimal mean-square-error calibration of classifier error estimators under Bayesian models

A recently proposed Bayesian modeling framework for classification facilitates both the analysis and optimization of error estimation performance. The Bayesian error estimator is then defined to have optimal mean-square error performance, but in many situations closed-form representations are unavailable and approximations may not be feasible. To address this, we present a method to optimally c...

متن کامل

Three-stage inversion improvement for forest height estimation using dual-PolInSAR data

This paper addresses an algorithm for forest height estimation using single frequency single baseline dual polarization radar interferometry data. The proposed method is based on a physical two layer volume over ground model and is represented using polarimetric synthetic aperture radar interferometry (PolInSAR) technique. The presented algorithm provides the opportunity to take advantages of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017