Nitrogen-doped Graphene Interpenetrated 3-D Ni- Nanocage: Efficient and Stable Water-to- Dioxygen Electrocatalyst

نویسندگان

  • Vishal M. Dhavale
  • Sachin S. Gaikwad
  • Leena George
  • R. Nandini Devi
  • Sreekumar Kurungot
چکیده

Herein, we report synthesis of nitrogen-doped graphene (NGr) interpenetrated 3-D Ninanocage (Ni-NGr) electrocatalyst by simple water-in-oil (w/o) emulsion technique for oxidation of water-to-dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as concomitant interaction of N, C, with Ni at a nano-regime have been investigated. Apart from the benefits of the synergistic interactions between Ni, N, and C, the overall integrity of the structure and its intra-molecular connectivity within the framework help to achieve better oxygen evolution characteristics at a significantly reduced overpotential. The engineered Ni-NGr nanocage displays a substantially low overpotential of ~290 mV at practical current density of 20 mA/cm in 0.1 M KOH. In comparison, NGr and Ni-particle as separate entities give overpotentials of ~570 and ~ 370 mV under similar conditions. Moreover, the long term stability of Ni-NGr has been investigated by anodic potential cycling for 500 cycles and observed an 8.5 % increment in the overpotential at 20 mA/cm . Additionally, chronoamperometric test has been performed for 15 h at 20 mA/cm , which highlight the better sustainability of Ni-NGr in the actual operating condition. Finally, the quantitative estimation of evolved oxygen has been monitored by gas chromatography and is found to be 70 mmol/h/g of oxygen, which is constant in second cycle as well.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitrogen-doped graphene interpenetrated 3D Ni-nanocages: efficient and stable water-to-dioxygen electrocatalysts.

Herein, we report the synthesis of a nitrogen-doped graphene (NGr) interpenetrated 3D Ni-nanocage (Ni-NGr) electrocatalyst by a simple water-in-oil (w/o) emulsion technique for oxidation of water to dioxygen. Correlation of adsorption of NGr and subsequent interpenetration through the specific surface plane of nickel particles as well as the concomitant interaction of N and C with Ni in the nan...

متن کامل

A Novel and an Efficient 3-D High Nitrogen Doped Graphene Oxide Adsorbent for the Removal of Congo Red from Aqueous Solutions

The current study both synthesizes and uses four compounds of graphene oxide (GO), nitrogen doped graphene oxide (ND-GO), high nitrogen doped graphene oxide (HND-GO), and three dimensional high nitrogen doped graphene oxide (3D-HND-GO) in order to remove a model anionic dye, Congo red (CR) from wastewaters. It also compares their carbon nano-structure, with regard to removal efficiency and find...

متن کامل

A Novel and an Efficient 3-D High Nitrogen Doped Graphene Oxide Adsorbent for the Removal of Congo Red from Aqueous Solutions

The current study both synthesizes and uses four compounds of graphene oxide (GO), nitrogen doped graphene oxide (ND-GO), high nitrogen doped graphene oxide (HND-GO), and three dimensional high nitrogen doped graphene oxide (3D-HND-GO) in order to remove a model anionic dye, Congo red (CR) from wastewaters. It also compares their carbon nano-structure, with regard to removal efficiency and find...

متن کامل

Ruthenium-cobalt nanoalloys encapsulated in nitrogen-doped graphene as active electrocatalysts for producing hydrogen in alkaline media

The scalable production of hydrogen could conveniently be realized by alkaline water electrolysis. Currently, the major challenge confronting hydrogen evolution reaction (HER) is lacking inexpensive alternatives to platinum-based electrocatalysts. Here we report a high-efficient and stable electrocatalyst composed of ruthenium and cobalt bimetallic nanoalloy encapsulated in nitrogen-doped graph...

متن کامل

Electrocatalytic oxidation of ethanol on the surface of the POAP/ phosphoric acid-doped ionic liquid-functionalized graphene oxide nanocomposite film

In situ electropolymerization as a facile synthetic procedure has been used to obtain highly active compositesof ionic liquid functionalized graphene oxide(FGO)and poly ortho aminophenol (POAP). Surface and electrochemical analysis have been used for characterisation of FGO-POAP composite film. Nickel was accumulated by complex formation between Ni (II) in solution and amines sites in the polym...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015