Gene microarray assessment of multiple genes and signal pathways involved in androgen-dependent prostate cancer becoming androgen independent.
نویسندگان
چکیده
To study the gene expression change and possible signal pathway during androgen-dependent prostate cancer (ADPC) becoming androgen-independent prostate cancer (AIPC), an LNCaP cell model of AIPC was established using flutamide in combination with androgen-free environment inducement, and differential expression genes were screened by microarray. Then the biological process, molecular function and KEGG pathway of differential expression genes are analyzed by Molecule Annotation System (MAS). By comparison of 12,207 expression genes, 347 expression genes were acquired, of which 156 were up-ragulated and 191 down-regulated. After analyzing the biological process and molecule function of differential expression genes, these genes are found to play crucial roles in cell proliferation, differntiation, cell cycle control, protein metabolism and modification and other biological process, serve as signal molecules, enzymes, peptide hormones, cytokines, cytoskeletal proteins and adhesion molecules. The analysis of KEGG show that the relevant genes of AIPC transformation participate in glutathione metabolism, cell cycle, P53 signal pathway, cytochrome P450 metabolism, Hedgehog signal pathway, MAPK signal pathway, adipocytokines signal pathway, PPAR signal pathway, TGF-β signal pathway and JAK-STAT signal pathway. In conclusion, during the process of ADPC becoming AIPC, it is not only one specific gene or pathway, but multiple genes and pathways that change. The findings above lay the foundation for study of AIPC mechanism and development of AIPC targeting drugs.
منابع مشابه
ژنتیک مولکولی، تشخیص، پیشگیری و ژن درمانی در سرطان پروستات: مقاله مروری
The prostate is a small gland located below the bladder and upper part of the urethra. In developed countries prostate cancer is the second common cancer (after skin cancer), and also the second leading cause of cancer death (after lung cancer) among men. The several studies have been shown prostate cancer familial aggregation. The main reason for this aggregation is inheritance included genes....
متن کاملCharacterization of the Small RNA Transcriptomes of Androgen Dependent and Independent Prostate Cancer Cell Line by Deep Sequencing
Given the important roles of miRNA in post-transcriptional regulation and its implications for cancer, characterization of miRNA facilitates us to uncover molecular mechanisms underlying the progression of androgen-independent prostate cancer (PCa). The emergence of next-generation sequencing technologies has dramatically changed the speed of all aspects of sequencing in a rapid and cost-effect...
متن کاملP-84: Characterization of Androgen Receptor Structure and Nucleocytoplasmic Shuttling of the Rice Field Eel
Background: Androgen receptor (AR) plays a critical role in prostate cancer and male sexual differentiation.Mechanisms by which AR acts and regulations of AR nucleocytoplasmic shuttling are not understood well. Materials and Methods: Degenerate PCR and RACE Cloning of AR Gene; Phylogenetic Analysis and Molecular Modeling;Real-time Fluorescent Quantitative RT-PCR; Northern Blot Hybridization;In ...
متن کاملGenome-Wide Methylation Patterns in Androgen-Independent Prostate Cancer Cells: A Comprehensive Analysis Combining MeDIP-Bisulfite, RNA, and microRNA Sequencing Data
This study aimed to investigate the mechanisms underlying the development of the androgen-independent phenotype in prostate cancer. Methylation patterns were detected in androgen-independent and androgen-dependent lymph node carcinoma of the prostate (LNCaP) prostate carcinoma cells based on methylated DNA immunoprecipitation-bisulfite sequencing data and differentially methylated regions (DMRs...
متن کاملGenome-wide expression profiling reveals transcriptomic variation and perturbed gene networks in androgen-dependent and androgen-independent prostate cancer cells.
Previously, we have developed a unique in vitro LNCaP cell model, which includes androgen-dependent (LNCaP-C33), androgen-independent (LNCaP-C81) and an intermediate phenotype (LNCaP-C51) cell lines resembling the stages of prostate cancer progression to hormone independence. This model is advantageous in overcoming the heterogeneity associated with the prostate cancer up to a certain extent. W...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Asian Pacific journal of cancer prevention : APJCP
دوره 15 22 شماره
صفحات -
تاریخ انتشار 2014