Fibonacci scheme for fault-tolerant quantum computation
نویسندگان
چکیده
We rigorously analyze Knill’s Fibonacci scheme for fault-tolerant quantum computation, which is based on the recursive preparation of Bell states protected by a concatenated error-detecting code. We prove lower bounds on the threshold fault rate of 0.67 10−3 for adversarial local stochastic noise, and 1.25 10−3 for independent depolarizing noise. In contrast to other schemes with comparable proved accuracy thresholds, the Fibonacci scheme has a significantly reduced overhead cost because it uses postselection far more sparingly.
منابع مشابه
Designer non-Abelian anyon platforms: from Majorana to Fibonacci
The emergence of non-Abelian anyons from large collections of interacting elementary particles is a conceptually beautiful phenomenon with important ramifications for fault-tolerant quantum computing. Over the last few decades the field has evolved from a highly theoretical subject to an active experimental area, particularly following proposals for trapping non-Abelian anyons in ‘engineered’ s...
متن کاملFault-tolerant quantum computation with asymmetric Bacon-Shor codes
We develop a scheme for fault-tolerant quantum computation based on asymmetric Bacon-Shor codes, which works effectively against highly biased noise dominated by dephasing. We find the optimal Bacon-Shor block size as a function of the noise strength and the noise bias, and estimate the logical error rate and overhead cost achieved by this optimal code. Our fault-tolerant gadgets, based on gate...
متن کاملSystematic distillation of composite Fibonacci anyons using one mobile quasiparticle
A topological quantum computer should allow intrinsically fault-tolerant quantum computation, but there remains uncertainty about how such a computer can be implemented. It is known that topological quantum computation can be implemented with limited quasiparticle braiding capabilities, in fact using only a single mobile quasiparticle, if the system can be properly initialized by measurements. ...
متن کاملFault-tolerant quantum computation with high threshold in two dimensions.
We present a scheme of fault-tolerant quantum computation for a local architecture in two spatial dimensions. The error threshold is 0.75% for each source in an error model with preparation, gate, storage, and measurement errors.
متن کاملFault-tolerant linear optics quantum computation by error-detecting quantum state transfer
A scheme for linear optical implementation of fault-tolerant quantum computation is proposed, which is based on an error-detecting code. Each computational step is mediated by transfer of quantum information into an ancilla system embedding error-detection capability. Photons are assumed to be subjected to both photon loss and depolarization, and the threshold region of their strengths for scal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009