Decadal Shift in El Niño Influences on Indo–Western Pacific and East Asian Climate in the 1970s*
نویسندگان
چکیده
El Niño’s influence on the subtropical northwest (NW) Pacific climate increased after the climate regime shift of the 1970s. This is manifested in well-organized atmospheric anomalies of suppressed convection and a surface anticyclone during the summer (June–August) of the El Niño decay year [JJA(1)], a season when equatorial Pacific sea surface temperature (SST) anomalies have dissipated. In situ observations and ocean– atmospheric reanalyses are used to investigate mechanisms for the interdecadal change. During JJA(1), the influence of the El Niño–Southern Oscillation (ENSO) on the NW Pacific is indirect, being mediated by SST conditions over the tropical Indian Ocean (TIO). The results here show that interdecadal change in this influence is due to changes in the TIO response to ENSO. During the postregime shift epoch, the El Niño teleconnection excites downwelling Rossby waves in the south TIO by anticyclonic wind curls. These Rossby waves propagate slowly westward, causing persistent SST warming over the thermocline ridge in the southwest TIO. The ocean warming induces an antisymmetric wind pattern across the equator, and the anomalous northeasterlies cause the north Indian Ocean to warm through JJA(1) by reducing the southwesterly monsoon winds. The TIO warming excites a warm Kelvin wave in tropospheric temperature, resulting in robust atmospheric anomalies over the NW Pacific that include the surface anticyclone. During the preregime shift epoch, ENSO is significantly weaker in variance and decays earlier than during the recent epoch. Compared to the epoch after the mid-1970s, SST and wind anomalies over the TIO are similar during the developing and mature phases of ENSO but are very weak during the decay phase. Specifically, the southern TIO Rossby waves are weaker, so are the antisymmetric wind pattern and the North Indian Ocean warming during JJA(1). Without the anchor in the TIO warming, atmospheric anomalies over the NW Pacific fail to develop during JJA(1) prior to the mid-1970s. The relationship of the interdecadal change to global warming and implications for the East Asian summer monsoon are discussed.
منابع مشابه
The Indonesian throughflow, its variability and centennial change
The Indonesian Throughflow (ITF) is an important component of the upper cell of the global overturning circulation that provides a low-latitude pathway for warm, fresh waters from the Pacific to enter the Indian Ocean. Variability and changes of the ITF have significant impacts on Indo-Pacific oceanography and global climate. In this paper, the observed features of the ITF and its interannual t...
متن کاملLinks between Indo-Pacific climate variability and drought in the Monsoon Asia Drought Atlas
Drought patterns across monsoon and temperate Asia over the period 1877–2005 are linked to IndoPacific climate variability associated with the El NiñoSouthern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Using the Monsoon Asia Drought Atlas (MADA) composed of a high-resolution network of hydroclimatically sensitive tree-ring records with a focus on the June– August months, spatial drou...
متن کاملTropical–North Pacific Climate Linkages over the Past Four Centuries*
Analyses of instrumental data demonstrate robust linkages between decadal-scale North Pacific and tropical Indo-Pacific climatic variability. These linkages encompass common regime shifts, including the noteworthy 1976 transition in Pacific climate. However, information on Pacific decadal variability and the tropical high-latitude climate connection is limited prior to the twentieth century. He...
متن کاملDecadal cooling in the Indian summer monsoon after 1997/1998 El Niño and its impact on the East Asian summer monsoon
[1] Observational evidences are presented to show a significant atmospheric diabatic cooling in the Indian summer monsoon (ISM) region after the 1997/1998 El Niño. This study investigates the cause of this decadal cooling and its impact on the East Asian summer monsoon (EASM). After 1997/1998, the abnormal sea surface temperature warming in the western Pacific, which is not fully demonstrated i...
متن کاملIndian Ocean Variability in the GFDL Coupled Climate Model
The interannual variability of the Indian Ocean, with particular focus on the Indian Ocean dipole/zonal mode (IODZM), is investigated in a 250-yr simulation of the GFDL coupled global general circulation model (CGCM). The CGCM successfully reproduces many fundamental characteristics of the climate system of the Indian Ocean. The character of the IODZM is explored, as are relationships between p...
متن کامل