A Comparison of Decision Tree with Logistic Regression Model for Prediction of Worst Non-Financial Payment Status in Commercial Credit

نویسندگان

  • Jessica M. Rudd
  • Jennifer L. Priestley
چکیده

Credit risk prediction is an important problem in the financial services domain. While machine learning techniques such as Support Vector Machines and Neural Networks have been used for improved predictive modeling, the outcomes of such models are not readily explainable and, therefore, difficult to apply within financial regulations. In contrast, Decision Trees are easy to explain, and provide an easy to interpret visualization of model decisions. The aim of this paper is to predict worst non-financial payment status among businesses, and evaluate decision tree model performance against traditional Logistic Regression model for this task. The dataset for analysis is provided by Equifax and includes over 300 potential predictors from more than 11 million unique businesses. After a data discovery phase, including imputation, cleaning, and transforming potential predictors, Decision Tree and Logistic Regression models were built on the same finalized analysis dataset. Evaluating the models based on ROC index, and Kolmogorov-Smirnov statistic, Decision Tree performed as well as the Logistic Regression model. Keywords—Logistic Regression; Decision Tree; Credit Risk; Commercial Credit

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Credit Card Holders' Behavior Modeling: Transition Probability Prediction with Multinomial and Conditional Logistic Regression in SAS/STAT®

Because of the variety of card holders‟ behavior patterns and income sources, each consumer account can change to different states. Each consumer account can change to states such as non-active, transactor, revolver, delinquent, and defaulted, and each account requires an individual model for generated income prediction. The estimation of the transition probability between statuses at the accou...

متن کامل

Credit Risk Measurement of Trusted Customers Using Logistic Regression and Neural Networks

The issue of credit risk and deferred bank claims is one of the sensitive issues of banking industry, which can be considered as the main cause of bank failures. In recent years, the economic slowdown accompanied by inflation in Iran has led to an increase in deferred bank claims that could put the country's banking system in serious trouble. Accordingly, the current paper presents a prediction...

متن کامل

Comparison of Gestational Diabetes Prediction Between Logistic Regression, Discriminant Analysis, Decision Tree and Artificial Neural Network Models

Background and Objectives: Gestational Diabetes Mellitus (GDM) is the most common metabolic disorder in pregnancy. In case of early detection, some of its complications can be prevented. The aim of this study was to investigate early prediction of GDM by logistic regression (LR), discriminant analysis (DA), decision tree (DT) and perceptron artificial neural network (ANN) and to compare these m...

متن کامل

The Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan

One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...

متن کامل

Ranking stocks of listed companies on Tehran stock exchange using a hybrid model of decision tree and logistic regression

Much research has introduced linear or nonlinear models using statistical models and machine learning tools in artificial intelligence to estimate Iran's rate of return. The primary purpose of these methods is simultaneously use different independent variables to improve stock return rates' modeling. However, in predicting the rate of return, in addition to the modeling method, the degree of co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017