Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering

نویسندگان

  • Liping Jing
  • Peng Wang
  • Liu Yang
چکیده

In recommendation systems, probabilistic matrix factorization (PMF) is a state-of-the-art collaborative filtering method by determining the latent features to represent users and items. However, two major issues limiting the usefulness of PMF are the sparsity problem and long-tail distribution. Sparsity refers to the situation that the observed rating data are sparse, which results in that only part of latent features are informative for describing each item/user. Long tail distribution implies that a large fraction of items have few ratings. In this work, we propose a sparse probabilistic matrix factorization method (SPMF) by utilizing a Laplacian distribution to model the item/user factor vector. Laplacian distribution has ability to generate sparse coding, which is beneficial for SPMF to distinguish the relevant and irrelevant latent features with respect to each item/user. Meanwhile, the tails in Laplacian distribution are comparatively heavy, which is rewarding for SPMF to recommend the tail items. Furthermore, a distributed Gibbs sampling algorithm is developed to efficiently train the proposed sparse probabilistic model. A series of experiments on Netflix and Movielens datasets have been conducted to demonstrate that SPMF outperforms the existing PMF and its extended version Bayesian PMF (BPMF), especially for the recommendation of tail items.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluating Probabilistic Matrix Factorization on Netflix Dataset

Collaborative Filtering attempts to make automatic taste recommendations by examing a large number of taste information. Methods for achieving Collaborative Filtering can be broadly categorized into model based, and memory based techniques. In this project, we review and implement three variants of Probabilistic Matrix Factorization, a model based Collaborative Filtering algorithm. We compare t...

متن کامل

Subgroup Analysis Based On Domain Sensitive Recommendation

Collaborative filtering is an effective recommendation approach in which the preference of a user on an item is predicted based on the preferences of other users with similar interests. A big challenge in using collaborative filtering methods is the data sparsity problem which often arises because each user typically only rates very few items and hence the rating matrix is extremely sparse. In ...

متن کامل

Mining User Relations from Online Discussions using Sentiment Analysis and Probabilistic Matrix Factorization

Advances in sentiment analysis have enabled extraction of user relations implied in online textual exchanges such as forum posts. However, recent studies in this direction only consider direct relation extraction from text. As user interactions can be sparse in online discussions, we propose to apply collaborative filtering through probabilistic matrix factorization to generalize and improve th...

متن کامل

SCMF: Sparse Covariance Matrix Factorization for Collaborative Filtering

Matrix factorization (MF) is a popular collaborative filtering approach for recommender systems due to its simplicity and effectiveness. Existing MF methods either assume that all latent features are uncorrelated or assume that all are correlated. To address the important issue of what structure should be imposed on the features, we investigate the covariance matrix of the latent features learn...

متن کامل

Multi-Domain Collaborative Filtering

Collaborative filtering is an effective recommendation approach in which the preference of a user on an item is predicted based on the preferences of other users with similar interests. A big challenge in using collaborative filtering methods is the data sparsity problem which often arises because each user typically only rates very few items and hence the rating matrix is extremely sparse. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015