An fMRI study of reward-related probability learning.

نویسندگان

  • M R Delgado
  • M M Miller
  • S Inati
  • E A Phelps
چکیده

The human striatum has been implicated in processing reward-related information. More recently, activity in the striatum, particularly the caudate nucleus, has been observed when a contingency between behavior and reward exists, suggesting a role for the caudate in reinforcement-based learning. Using a gambling paradigm, in which affective feedback (reward and punishment) followed simple, random guesses on a trial by trial basis, we sought to investigate the role of the caudate nucleus as reward-related learning progressed. Participants were instructed to make a guess regarding the value of a presented card (if the value of the card was higher or lower than 5). They were told that five different cues would be presented prior to making a guess, and that each cue indicated the probability that the card would be high or low. The goal was to learn the contingencies and maximize the reward attained. Accuracy, as measured by participant's choices, improved throughout the experiment for cues that strongly predicted reward, while no change was observed for unpredictable cues. Event-related fMRI revealed that activity in the caudate nucleus was more robust during the early phases of learning, irrespective of contingencies, suggesting involvement of this region during the initial stages of trial and error learning. Further, the reward feedback signal in the caudate nucleus for well-learned cues decreased as learning progressed, suggesting an evolving adaptation of reward feedback expectancy as a behavior-outcome contingency becomes more predictable.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The neural correlates of reward-related trial-and-error learning: an fMRI study with a probabilistic learning task.

This fMRI study investigated the neural correlates of reward-related trial-and-error learning in association with changing degrees of stimulus-outcome predictabilities. We found that decreasing predictability was associated with increasing activation in a frontoparietal network. Only maximum predictability was associated with signal decreases across the learning process. The receipt of monetary...

متن کامل

Neural coding of distinct statistical properties of reward information in humans.

Brain processing of reward information is essential for complex functions such as learning and motivation. Recent primate electrophysiological studies using concepts from information, economic and learning theories indicate that the midbrain may code two statistical parameters of reward information: a transient reward error prediction signal that varies linearly with reward probability and a su...

متن کامل

A neural correlate of reward-based behavioral learning in caudate nucleus: a functional magnetic resonance imaging study of a stochastic decision task.

Humans can acquire appropriate behaviors that maximize rewards on a trial-and-error basis. Recent electrophysiological and imaging studies have demonstrated that neural activity in the midbrain and ventral striatum encodes the error of reward prediction. However, it is yet to be examined whether the striatum is the main locus of reward-based behavioral learning. To address this, we conducted fu...

متن کامل

Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning.

To select appropriate behaviors leading to rewards, the brain needs to learn associations among sensory stimuli, selected behaviors, and rewards. Recent imaging and neural-recording studies have revealed that the dorsal striatum plays an important role in learning such stimulus-action-reward associations. However, the putamen and caudate nucleus are embedded in distinct cortico-striatal loop ci...

متن کامل

Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment.

The goal of the present study was to elucidate the role of the human striatum in learning via reward and punishment during an associative learning task. Previous studies have identified the striatum as a critical component in the neural circuitry of reward-related learning. It remains unclear, however, under what task conditions, and to what extent, the striatum is modulated by punishment durin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 24 3  شماره 

صفحات  -

تاریخ انتشار 2005