Optimal Intrinsic Dynamics for Bursting in a Three-Cell Network
نویسندگان
چکیده
Previous numerical and analytical work has shown that synaptic coupling can allow a network of model neurons to synchronize despite heterogeneity in intrinsic parameter values. In particular, synchronous bursting oscillations can arise in a network with excitatory synaptic coupling, even in the absence of intrinsically bursting neurons. In this work, we explore how the intrinsic dynamics of neurons within a reduced three-cell network influence its ability to exhibit synchronous bursting and the frequency range over which such activity can occur. We establish necessary and sufficient conditions for the existence of synchronous bursting solutions and perform related numerical experiments in three-cell networks that include a quiescent cell, a tonically active cell, and a third added cell. Our results show that, in most cases, the addition of a quiescent cell is optimal for synchronous network bursting, in a variety of ways, and that intrinsically bursting cells can be detrimental to synchronous bursting, and we explain the mechanisms underlying these effects. These findings may help explain how robust synchronous oscillations arise in neuronal central pattern generators, such as the mammalian inspiratory network, despite the presence of significant cellular heterogeneity. They also support the idea that intrinsic burst capabilities of individual cells need not be central to these networks’ rhythms.
منابع مشابه
The Interaction of Intrinsic Dynamics and Network Topology in Determining Network Burst Synchrony
The pre-Bötzinger complex (pre-BötC), within the mammalian respiratory brainstem, represents an ideal system for investigating the synchronization properties of complex neuronal circuits via the interaction of cell-type heterogeneity and network connectivity. In isolation, individual respiratory neurons from the pre-BötC may be tonically active, rhythmically bursting, or quiescent. Despite this...
متن کاملIntrinsic Adaptation in Autonomous Recurrent Neural Networks
A massively recurrent neural network responds on one side to input stimuli and is autonomously active, on the other side, in the absence of sensory inputs. Stimuli and information processing depend crucially on the quality of the autonomous-state dynamics of the ongoing neural activity. This default neural activity may be dynamically structured in time and space, showing regular, synchronized, ...
متن کاملDesign of the optimal magnetic field in application of functionalized CNT-based drug delivery toward the cell membrane: Computational Analysis
Recently, Carbon Nano (CN) structures are widely used in medical applications, especially the detection and treatment of cancer disease. Among various types of CNs, Carbone Nano Tubes (CNTs) attracted many researchers' attention to consider them toward clinical application. Regarding the intrinsic structure of CNTs, they can be used widely in drug delivery applications. Functionalized CNTs and ...
متن کاملExtracting Dynamics Matrix of Alignment Process for a Gimbaled Inertial Navigation System Using Heuristic Dynamic Programming Method
In this paper, with the aim of estimating internal dynamics matrix of a gimbaled Inertial Navigation system (as a discrete Linear system), the discretetime Hamilton-Jacobi-Bellman (HJB) equation for optimal control has been extracted. Heuristic Dynamic Programming algorithm (HDP) for solving equation has been presented and then a neural network approximation for cost function and control input ...
متن کاملInteractions between membrane conductances underlying thalamocortical slow-wave oscillations.
Neurons of the central nervous system display a broad spectrum of intrinsic electrophysiological properties that are absent in the traditional "integrate-and-fire" model. A network of neurons with these properties interacting through synaptic receptors with many time scales can produce complex patterns of activity that cannot be intuitively predicted. Computational methods, tightly linked to ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Applied Dynamical Systems
دوره 9 شماره
صفحات -
تاریخ انتشار 2010