Oleuropein improves insulin resistance in skeletal muscle by promoting the translocation of GLUT4

نویسندگان

  • Yoko Fujiwara
  • Chisato Tsukahara
  • Naoe Ikeda
  • Yasuko Sone
  • Tomoko Ishikawa
  • Ikuyo Ichi
  • Taisuke Koike
  • Yoshinori Aoki
چکیده

As the beneficial effects of the Mediterranean diet on human health are well established, the phenolic compounds in olive oil have been gaining interest. Oleuropein, a major phenolic compound in olives, is known to reduce the blood glucose levels in alloxan-induced diabetic rats and rabbits, however, its effect on type 2 diabetes caused by obesity is not clear. The purpose of this study is clarifying the effect of oleuropein on the glucose tolerance in skeletal muscle under the condition of lipotoxicity caused by type 2 diabetes. Oleuropein enhanced glucose uptake in C2C12 cells without insulin. Translocation of glucose transporter 4 (GLUT4) into the cell membrane was promoted by activation of adenosine monophosphate-activated protein kinase (AMPK) but not protein kinase B (Akt). Physiological concentration of oleuropein (10 µM) was sufficient to express beneficial effects on C2C12 cells. Oleuropein prevented palmitic acid-induced myocellular insulin resistance. Furthermore, in gastrocnemius muscles of mice fed a high fat diet, oleuropein also induced the GLUT4 localization into cell membrane. These results suggest the possibility of oleuropein to be effective for type 2 diabetes by reducing insulin resistance in skeletal muscles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Understanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach

Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...

متن کامل

Cacao liquor procyanidin extract improves glucose tolerance by enhancing GLUT4 translocation and glucose uptake in skeletal muscle

Hyperglycaemia and insulin resistance are associated with the increased risk of the metabolic syndrome and other severe health problems. The insulin-sensitive GLUT4 regulates glucose homoeostasis in skeletal muscle and adipose tissue. In this study, we investigated whether cacao liquor procyanidin (CLPr) extract, which contains epicatechin, catechin and other procyanidins, improves glucose tole...

متن کامل

Semen Cassiae Extract Improves Glucose Metabolism by Promoting GlUT4 Translocation in the Skeletal Muscle of Diabetic Rats

Citation: Zhang M, Li X, Liang H, Cai H, Hu X, Bian Y, Dong L, Ding L, Wang L, Yu B, Zhang Y and Zhang Y (2018) Semen Cassiae Extract Improves Glucose Metabolism by Promoting GlUT4 Translocation in the Skeletal Muscle of Diabetic Rats. Front. Pharmacol. 9:235. doi: 10.3389/fphar.2018.00235 Semen Cassiae Extract Improves Glucose Metabolism by Promoting GlUT4 Translocation in the Skeletal Muscle ...

متن کامل

ACE inhibitor improves insulin resistance in diabetic mouse via bradykinin and NO.

Improvement of insulin resistance by ACE inhibitors has been suggested; however, this mechanism has not been proved. We postulated that activation of the bradykinin-nitric oxide (NO) system by an ACE inhibitor enhances glucose uptake in peripheral tissues by means of an increase in translocation of glucose transporter 4 (GLUT4), resulting in improvement of insulin resistance. Administration of ...

متن کامل

Intake of tea prevents postprandial hyperglycemia by promoting GLUT4 translocation in skeletal muscle

The anti-hyperglycemic effects of tea are well documented. However, the effects of tea on the translocation of glucose transporter 4 (GLUT4), the major glucose transporter for glucose uptake in the postprandial period, in skeletal muscle and the underlying molecular mechanisms are not fully understood. In this study, we investigated the translocation of GLUT4 and its related signaling pathways ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2017