Manganese Sulfide (MnS) Nanocrystals: Synthesis, Properties, and Applications

نویسندگان

  • Anna M. Ferretti
  • Sara Mondini
  • Alessandro Ponti
چکیده

Manganese(II) sulfide (MnS) is an interesting material for both fundamental and applicative research, especially when its bulk properties are modulated by reducing the size into the nanometric region (< 100 nm). Due to its polymorphism, MnS is an attractive material to develop synthetic strategies for polymorphism control. We have reviewed the literature concerning MnS nanosystems having at least one dimension smaller than 100 nm. Successful synthetic techniques for the preparation of zeroand one-dimensional MnS nanosystems (either homogeneous and heterogeneous) with size, shape, and polymorphism control are presented with emphasis on solvothermal techniques and on studies devoted to understanding the growth mechanism and the polymorphism. Properties and applications are collected in three broad areas corresponding to nanosize MnS used as an optical, electric, and magnetic material. MnS has attracting properties such as its large bandgap, which makes it promising for emission in the ultraviolet region. The magnetic properties have also arisen attention since MnS is antiferromagnetic at low temperature and (super)paramagnetic at room temperature. Finally, the layered structure of the hexagonal polymorph is responsible for the good performance of nanosize MnS as a lithium-ion battery electrode or supercapacitor material since the insertion/exchange of small ions is easy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Morphology controlled synthesis of monodispersed manganese sulfide nanocrystals and their primary application in supercapacitors with high performances.

Monodispersed hollow spindle-like nanosphere (HS-NS) and tetrapod nanorod (TP-NR) MnS nanocrystals are obtained via a facile template-free hydrothermal process. The MnS nanocrystals are used as supercapacitor materials and they exhibit high performances. The TP-NR nanocrystals show a higher specific capacitance of 704.5 F g(-1) compared to the HS-NS nanocrystals, and both show higher values com...

متن کامل

Surfactant-controlled composition and crystal structure of manganese(II) sulfide nanocrystals prepared by solvothermal synthesis

We investigated how the outcome of the solvothermal synthesis of manganese(II) sulfide (MnS) nanocrystals (NCs) is affected by the type and amount of long chain surfactant present in the reaction mixture. Prompted by a previous observation that a larger than stoichiometric amount of sulfur is required [Puglisi, A.; Mondini, S.; Cenedese, S.; Ferretti, A. M.; Santo, N.; Ponti A. Chem. Mater. 201...

متن کامل

Effect of Composition and MnS Addition on Microstructure and Mechanical Properties of Powder Forged Copper Steel Parts

In this work, the effects of carbon content and manganese sulfide addition on the microstructure and mechanical properties of copper steel parts have been studied. Steel powder mixture containing 2%Cu and different graphite contents with and without MnS additions were compacted, sintered and forged to almost full density. Forged samples, with near theoretical densities, were tested for tensile,...

متن کامل

All-solid-state high performance asymmetric supercapacitors based on novel MnS nanocrystal and activated carbon materials

All-solid-state high-performance asymmetric supercapacitors (ASCs) are fabricated using γ-MnS as positive electrode and porous eggplant derived activated carbon (EDAC) as negative electrode with saturated potassium hydroxide agar gel as the solid electrolyte. The laminar wurtzite nanostructure of γ-MnS facilitates the insertion of hydroxyl ions into the interlayer space, and the manganese sulfi...

متن کامل

Selective Growth of Gold onto Copper Indium Sulfide Selenide Nanoparticles

Hybrid nanostructures are interesting materials for numerous applications in chemistry, physics, and biology, due to their novel properties and multiple functionalities. Here, we present a synthesis of metal–semiconductor hybrid nanostructures composed of nontoxic I-III-VI semiconductor nanoparticles and gold. Copper indium sulfide selenide (CuInSSe) nanocrystals with zinc blende structure and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018