Random walks, diffusion limited aggregation in a wedge, and average conformal maps.

نویسندگان

  • Leonard M Sander
  • Ellák Somfai
چکیده

We investigate diffusion-limited aggregation (DLA) in a wedge geometry. Arneodo and collaborators have suggested that the ensemble average of DLA cluster density should be close to the noise-free selected Saffman-Taylor finger. We show that a different, but related, ensemble average, that of the conformal maps associated with random clusters, yields a nontrivial shape which is also not far from the Saffman-Taylor finger. However, we have previously demonstrated that the same average of DLA in a channel geometry is not the Saffman-Taylor finger. This casts doubt on the idea that the average of noisy diffusion-limited growth is governed by a simple transcription of noise-free results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of conformal maps for a class of non-Laplacian growth phenomena.

Time-dependent conformal maps are used to model a class of growth phenomena limited by coupled non-Laplacian transport processes, such as nonlinear diffusion, advection, and electromigration. Both continuous and stochastic dynamics are described by generalizing conformal-mapping techniques for viscous fingering and diffusion-limited aggregation, respectively. The theory is applied to simulation...

متن کامل

Transport-limited aggregation.

Diffusion-limited aggregation (DLA) and its variants provide the simplest models of fractal patterns, such as colloidal clusters, electrodeposits, and lightning strikes. The original model involves random walkers sticking to a growing cluster, but recently DLA (in the plane) has been reformulated in terms of stochastic conformal maps. This fruitful new perspective provides the exact Laplacian c...

متن کامل

Statistical models of diffusion and aggregation for coke formation in a catalyst pore

We simulated models of diffusion and aggregation in long pores of small widths in order to represent the basic mechanisms of coke deposition in catalysts’ pores. Coke precursors are represented by particles injected at the pore entrance. Knudsen diffusion, which is usually expected inside the pores, is modeled by ballistic motion of those particles. The regime of molecular diffusion is also ana...

متن کامل

Hyperbolic and Parabolic Unimodular Random Maps Omer Angel Tom Hutchcroft Asaf Nachmias Gourab Ray

We show that for infinite planar unimodular random rooted maps, many global geometric and probabilistic properties are equivalent, and are determined by a natural, local notion of average curvature. This dichotomy includes properties relating to amenability, conformal geometry, random walks, uniform and minimal spanning forests, and Bernoulli bond percolation. We also prove that every simply co...

متن کامل

Hyperbolic and Parabolic Unimodular Random Maps Omer Angel Tom Hutchcroft Asaf Nachmias Gourab Ray

We show that for infinite planar unimodular random rooted maps, many global geometric and probabilistic properties are equivalent, and are determined by a natural, local notion of average curvature. This dichotomy includes properties relating to amenability, conformal geometry, random walks, uniform and minimal spanning forests, and Bernoulli bond percolation. We also prove that every simply co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Chaos

دوره 15 2  شماره 

صفحات  -

تاریخ انتشار 2005