Optimizing multiple sequence alignments using a genetic algorithm based on three objectives: structural information, non-gaps percentage and totally conserved columns
نویسندگان
چکیده
MOTIVATION Multiple sequence alignments (MSAs) are widely used approaches in bioinformatics to carry out other tasks such as structure predictions, biological function analyses or phylogenetic modeling. However, current tools usually provide partially optimal alignments, as each one is focused on specific biological features. Thus, the same set of sequences can produce different alignments, above all when sequences are less similar. Consequently, researchers and biologists do not agree about which is the most suitable way to evaluate MSAs. Recent evaluations tend to use more complex scores including further biological features. Among them, 3D structures are increasingly being used to evaluate alignments. Because structures are more conserved in proteins than sequences, scores with structural information are better suited to evaluate more distant relationships between sequences. RESULTS The proposed multiobjective algorithm, based on the non-dominated sorting genetic algorithm, aims to jointly optimize three objectives: STRIKE score, non-gaps percentage and totally conserved columns. It was significantly assessed on the BAliBASE benchmark according to the Kruskal-Wallis test (P < 0.01). This algorithm also outperforms other aligners, such as ClustalW, Multiple Sequence Alignment Genetic Algorithm (MSA-GA), PRRP, DIALIGN, Hidden Markov Model Training (HMMT), Pattern-Induced Multi-sequence Alignment (PIMA), MULTIALIGN, Sequence Alignment Genetic Algorithm (SAGA), PILEUP, Rubber Band Technique Genetic Algorithm (RBT-GA) and Vertical Decomposition Genetic Algorithm (VDGA), according to the Wilcoxon signed-rank test (P < 0.05), whereas it shows results not significantly different to 3D-COFFEE (P > 0.05) with the advantage of being able to use less structures. Structural information is included within the objective function to evaluate more accurately the obtained alignments. AVAILABILITY The source code is available at http://www.ugr.es/~fortuno/MOSAStrE/MO-SAStrE.zip.
منابع مشابه
M2Align: parallel multiple sequence alignment with a multi-objective metaheuristic
Motivation Multiple sequence alignment (MSA) is an NP-complete optimization problem found in computational biology, where the time complexity of finding an optimal alignment raises exponentially along with the number of sequences and their lengths. Additionally, to assess the quality of a MSA, a number of objectives can be taken into account, such as maximizing the sum-of-pairs, maximizing the ...
متن کاملEvolutionary profiles derived from the QR factorization of multiple structural alignments gives an economy of information.
We present a new algorithm, based on the multidimensional QR factorization, to remove redundancy from a multiple structural alignment by choosing representative protein structures that best preserve the phylogenetic tree topology of the homologous group. The classical QR factorization with pivoting, developed as a fast numerical solution to eigenvalue and linear least-squares problems of the fo...
متن کاملCOFFEE: an objective function for multiple sequence alignments
MOTIVATION In order to increase the accuracy of multiple sequence alignments, we designed a new strategy for optimizing multiple sequence alignments by genetic algorithm. We named it COFFEE (Consistency based Objective Function For alignmEnt Evaluation). The COFFEE score reflects the level of consistency between a multiple sequence alignment and a library containing pairwise alignments of the s...
متن کاملAL2CO: calculation of positional conservation in a protein sequence alignment
MOTIVATION Amino acid sequence alignments are widely used in the analysis of protein structure, function and evolutionary relationships. Proteins within a superfamily usually share the same fold and possess related functions. These structural and functional constraints are reflected in the alignment conservation patterns. Positions of functional and/or structural importance tend to be more cons...
متن کاملMultiple Structural Rna Alignment with Affine Gap Costs Based on Lagrangian Relaxation
In this thesis the structural alignment of RNA sequences is addressed, a topic of crucial significance in the field of computational biology. Contrary to alignments of DNA, alignments of RNA are not only aligned based on sequence information, but largely depend on the correct structural alignment. Since the functions of RNA depend mostly on its secondary structure and this is highly conserved t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 29 17 شماره
صفحات -
تاریخ انتشار 2013