The Genome Sequences of Cellulomonas fimi and “Cellvibrio gilvus” Reveal the Cellulolytic Strategies of Two Facultative Anaerobes, Transfer of “Cellvibrio gilvus” to the Genus Cellulomonas, and Proposal of Cellulomonas gilvus sp. nov

نویسندگان

  • Melissa R. Christopherson
  • Garret Suen
  • Shanti Bramhacharya
  • Kelsea A. Jewell
  • Frank O. Aylward
  • David Mead
  • Phillip J. Brumm
چکیده

Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484(T). For comparative purposes, we also sequenced the genome of the aerobic cellulolytic "Cellvibrio gilvus" ATCC 13127(T). An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that "Cellvibrio gilvus" belongs to the genus Cellulomonas. We thus propose to assign "Cellvibrio gilvus" to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482(T) showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

49. The Novel Cellulolytic Strategy of Cellulomonas gilvus

Project Goals: The use of cellulolytic bacteria for generating cellulosic ethanol has recently been the focus of extensive research. This research has primarily focused on using engineered strains of cellulolytic bacteria, but there is growing interest in understanding the fundamental processes of cellulose degradation for identifying novel enzymes or for finding organisms capable of more effic...

متن کامل

Utilization of Cellulose Oligosaccharides by Cellvibrio Gilvus.

Schafer, Marion L. (Virginia Polytechnic Institute, Blacksburg), and Kendall W. King. Utilization of cellulose oligosaccharides by Cellvibrio gilvus. J. Bacteriol. 89:113-116. 1965.-The hypothesis that oligosaccharides of the cellulose polymer series can be absorbed by cellulolytic bacteria, prior to hydrolysis to the level of glucose or cellobiose, has been tested. Resting-cell suspensions of ...

متن کامل

Phenotypic and genetic characterization of clinical isolates of CDC coryneform group A-3: proposal of a new species of Cellulomonas, Cellulomonas denverensis sp. nov.

CDC coryneform group A-3 bacteria are rare human pathogens. In this study, six group A-3 isolates (two from blood, one from cerebrospinal fluid, and one each from homograft valve, lip wound, and pilonidal cyst) were compared to the type strains of phenotypically related organisms, Cellulomonas fimi, Cellulomonas hominis, Oerskovia turbata, and Sanguibacter suarezii, and characterized by phenoty...

متن کامل

Proteomic Analysis of the Secretome of Cellulomonas fimi ATCC 484 and Cellulomonas flavigena ATCC 482

The bacteria in the genus Cellulomonas are known for their ability to degrade plant cell wall biomass. Cellulomonas fimi ATCC 484 and C. flavigena ATCC 482 have been the subject of much research into secreted cellulases and hemicellulases. Recently the genome sequences of both C. fimi ATCC 484 and C. flavigena ATCC 482 were published, and a genome comparison has revealed their full spectrum of ...

متن کامل

Metabolic Nonequivalence of the Two Glucose Moieties of Cellobiose in Cellvibrio Gilvus.

Swisher, Elizabeth J. (Virginia Polytechnic Institute, Blacksburg), Waldemar O. Storvick, and Kendall W. King. Metabolic nonequivalence of the two glucose moieties of cellobiose in Cellvibrio gilvus. J. Bacteriol. 88:817-820. 1964.-Cellobiose was synthesized in 40% yield with uniform C(14) labeling in the reducing glucose moiety and no label in the nonreducing glucosyl. Resting-cell suspensions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013