Kurt Gödel and Computability Theory
نویسنده
چکیده
Although Kurt Gödel does not figure prominently in the history of computabilty theory, he exerted a significant influence on some of the founders of the field, both through his published work and through personal interaction. In particular, Gödel’s 1931 paper on incompleteness and the methods developed therein were important for the early development of recursive function theory and the lambda calculus at the hands of Church, Kleene, and Rosser. Church and his students studied Gödel 1931, and Gödel taught a seminar at Princeton in 1934. Seen in the historical context, Gödel was an important catalyst for the emergence of computability theory in the mid 1930s.
منابع مشابه
Metamathematical Results on Formally Undecidable Propositions: Completeness vs. Incompleteness 1. Life and Work
1. Life and work Kurt Gödel was a solitary genius, whose work influenced all the subsequent developments in mathematics and logic. The striking fundamental results in the decade 1929-1939 that made Gödel famous are the completeness of the first-order predicate logic proof calculus, the incompleteness of axiomatic theories containing arithmetic, and the consistency of the axiom of choice and the...
متن کاملTruth Values and Connectives in Some Non-Classical Logics
The question as to whether the propositional logic of Heyting, which was a formalization of Brouwer's intuitionistic logic, is finitely many valued or not, was open for a while (the question was asked by Hahn). Kurt Gödel (1932) introduced an infinite decreasing chain of intermediate logics, which are known nowadays as Gödel logics, for showing that the intuitionistic logic is not finitely (man...
متن کاملA Construction of Typed Lambda Models Related to Feasible Computability
In this paper we develop an approach to the notion of computable functionals in a very abstract setting not restricted to Turing or, say, polynomial computability. We assume to start from some basic class of domains and a basic class of functions deened on these domains. (An example may be natural numbers with polytime computable functions). Then we deene what are \all" corresponding functional...
متن کاملFirst Steps in Synthetic Computability Theory
Computability theory, which investigates computable functions and computable sets, lies at the foundation of computer science. Its classical presentations usually involve a fair amount of Gödel encodings which sometime obscure ingenious arguments. Consequently, there have been a number of presentations of computability theory that aimed to present the subject in an abstract and conceptually ple...
متن کاملTuring oracle machines, online computing, and three displacements in computability theory
We begin with the history of the discovery of computability in the 1930’s, the roles of Gödel, Church, and Turing, and the formalisms of recursive functions and Turing automatic machines (a-machines). To
متن کامل