Elliptical acoustic particle motion in underwater waveguides.
نویسندگان
چکیده
Elliptical particle motion, often encountered in acoustic fields containing interference between a source signal and its reflections, can be quantified by the degree of circularity, a vector quantity formulated from acoustic particle velocity, or vector intensity measurements. Acoustic analysis based on the degree of circularity is expected to find application in ocean waveguides as its spatial dependence relates to the acquisition geometry, water column sound speed, surface conditions, and bottom properties. Vector sensor measurements from a laboratory experiment are presented to demonstrate the depth dependence of both the degree of circularity and an approximate formulation based on vertical intensity measurements. The approximation is applied to vertical intensity field measurements made in a 2006 experiment off the New Jersey coast (in waters 80 m deep) to demonstrate the effect of sediment structure on the range dependence of the degree of circularity. The mathematical formulation presented here establishes the framework to readily compute the degree of circularity from experimental measurements; the experimental examples are provided as evidence of the spatial and frequency dependence of this fundamental vector property.
منابع مشابه
Evaluation of underwater acoustic propagation model (Ray theory) in a river using Fluvial Acoustic Tomography System
Underwater acoustics is widely used in many applications, such as oceanography, marine biology, hydrography, fishery, etc. Different models are introduced to simulate the underwater acoustic propagation in the oceans and the seas. In this study, the Ray Theory model is used to simulate the acoustic wave propagation in a shallow-freshwater river (Gono River) located in western part of Japan. The...
متن کاملEffect of Thermocline Formation on Underwater Acoustic Waves Propagation in Persian Gulf
Thermocline layer have remarkable effects on acoustic propagation in Persian Gulf environment. So far, no comprehensive research has been conducted to explore thermocline layer, especially its characteristics including top, thickness, and thermal gradient of thermocline in Persian Gulf. Besides, effects of thermocline on underwater acoustic propagation including transmission loss and sound chan...
متن کاملParallel implementation of underwater acoustic wave propagation using beamtracing method on graphical processing unit
The mathematical modeling of the acoustic wave propagation in seawater is the basis for realizing goals such as, underwater communication, seabed mapping, advanced fishing, oil and gas exploration, marine meteorology, positioning and explore the unknown targets within the water. However, due to the existence of various physical phenomena in the water environment and the various conditions gover...
متن کاملEffect of porosity on the characteristics of underwater acoustic sound absorbers using theoretical models
Porous materials have good acoustic damping characteristics over a wide frequency range. As for sound waves, many small-scale pores in the coating materials can convert underwater-coating to rough surfaces. The main property of porous absorbents is their resistance against incident sound wave that leads to damping effect. From a physical point of view, damping occurs due to friction between flu...
متن کاملA Perspective for Time-Varying Channel Compensation with Model-Based Adaptive Passive Time-Reversal
Underwater communications mainly rely on acoustic propagation which is strongly affected by frequency-dependent attenuation, shallow water multipath propagation and significant Doppler spread/shift induced by source-receiver-surface motion. Time-reversal based techniques offer a low complexity solution to decrease interferences caused by multipath, but a complete equalization cannot be reached ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 134 1 شماره
صفحات -
تاریخ انتشار 2013