Dynamic and structural correlations in nanocomposites of silica with modified surface and carboxylated nitrile rubber.

نویسندگان

  • Renata L Sala
  • Tatielih P Oliveira Xavier
  • Tiago Venâncio
  • Tatiane Moraes Arantes
  • Caio M Paranhos
  • Emerson R Camargo
چکیده

Distinct affinities between the organic and inorganic phases were observed in nanocomposites prepared through a colloidal route with carboxylated nitrile rubber and modified silica nanoparticles, which resulted in variable mechanical properties and improved thermal stability. Nanoparticles with modified surface affected the macromolecular arrangements of the elastomeric matrix, changing the final mechanical behavior of the nanocomposite, which could be predicted by the spin-lattice relaxation time measured by solid-state NMR. It was also possible to identify how each different nanoparticle affected the molecular dynamic of nanocomposite, correlating the dynamic-mechanical analysis with the NMR data of the saturated carbons of the elastomer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of structural, morphological and dynamic mechanical properties of unvulcanized PDMS/silica compound

In this study, the interaction between the silica filler and polydimethylsiloxanes (PDMS) was investigated from the aspects of the bound rubber and morphological characterization. With special attention to the dynamic properties, the dynamic test was conducted by dynamic shear rheometer. The results show that the modified fillers disperse uniformly within PDMS matrix without aggregation and con...

متن کامل

Improved curing conditions and mechanical/chemical properties of Nitrile Butadiene Rubber Composites Reinforced with Carbon Based Nanofillers

Multiwall carbon nanotubes (MWCNTs) and carbon nanofibers (CNFs) with contents ranging from 1 to 10 phr (part per hundred parts of rubber) were selected and then characterized to reinforce acrylonitrile butadiene rubber (NBR) based composites. Fabrication of nanocomposites were done by a novel procedure and structural analysis along with variety of mechanical and chemical tests, according to th...

متن کامل

بررسی خصوصیات نانو کامپوزیتXNBR جهت ساخت دستکش‌های حفاظتی

 Background & Objectives: Dermal exposure to chemical agents can result in a variety of occupational diseases and disorders, including occupational skin diseases and systemic toxicity . T he present paper focused on transport properties of nanocomposite based on carboxylated nitrile butadiene rubber (XNBR)-nanoclay.  Methods: In this study, XNBR gloves nanocomposite were prepared a...

متن کامل

Compatibilization Efficiency of Carboxylated Nitrile Rubber and Epoxy Pre - polymer in Nitrile / Acrylic Rubber

An investigation has been made of the effects from a compatibilizer, viz. carboxylated nitrile rubber (XNBR), on several properties of nitrile rubber (NBR) and acrylic rubber (ACM) blends, including curing characteristics, mechanical, dynamic mechanical and dielectric properties. The presence of XNBR until 10 phr resulted in an improvement of the ultimate tensile properties, especially elongati...

متن کامل

Transport properties of carboxylated nitrile butadiene rubber (XNBR)-nanoclay composites; a promising material for protective gloves in occupational exposures

This study was conducted in response to one of the research needs of National Institute for Occupational Safety and Health (NIOSH), i.e. the application of nanomaterials and nanotechnology in the field of occupational safety and health. In order to fill this important knowledge gap, the equilibrium solubility and diffusion of carbon tetrachloride and ethyl acetate through carboxylated nitrile b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of colloid and interface science

دوره 466  شماره 

صفحات  -

تاریخ انتشار 2016