Orbit equivalence for Cantor minimal Z 2 - systems

نویسندگان

  • Thierry Giordano
  • Hiroki Matui
چکیده

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N ov 2 00 7 Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

Se p 20 06 Orbit equivalence for Cantor minimal Z 2 - systems

We show that every minimal, free action of the group Z2 on the Cantor set is orbit equivalent to an AF-relation. As a consequence, this extends the classification of minimal systems on the Cantor set up to orbit equivalence to include AF-relations, Z-actions and Z2-actions.

متن کامل

An Example of Kakutani Equivalent and Strong Orbit Equivalent Substitution Systems That Are Not Conjugate

We present an example of Kakutani equivalent and strong orbit equivalent substitution systems that are not conjugate. Introduction. The motivation for this example came from [2], in which Dartnell, Durand, and Maass show that a minimal Cantor system and a Sturmian subshift are conjugate if and only if they are Kakutani equivalent and orbit equivalent (or equivalently strong orbit equivalent for...

متن کامل

A Bratteli Diagram for Commuting Homeomorphisms of the Cantor Set

This paper presents a construction of a sequence of Kakutani-Rohlin Towers and a corresponding simple Bratteli Diagram, B, for a general minimal aperiodic Z d action on a Cantor Set, X, with d 2. This is applied to the description of the orbit structure and to the calculation of the ordered group of coinvariants. For each minimal continuous Z d action on X there is a minimal continuous Z action...

متن کامل

C*-algebraic Characterization of Bounded Orbit Injection Equivalence for Minimal Free Cantor Systems

Bounded orbit injection equivalence is an equivalence relation defined on minimal free Cantor systems which is a candidate to generalize flip Kakutani equivalence to actions of the Abelian free groups on more than one generator. This paper characterizes bounded orbit injection equivalence in terms of a mild strengthening of Rieffel-Morita equivalence of the associated C*-crossed-product algebra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008