Usage of Lidar Data for Leaf Area Index Estimation

نویسندگان

  • Jan SABOL
  • Tomáš MIKITA
چکیده

Leaf area index (LAI) can be measured either directly, using destructive methods, or indirectly using optical methods that are based on the tight relationship between LAI and canopy light transmittance. Third, innovative approach for LAI measuring is usage of remote sensing data, especially airborne laser scanning (ALS) data shows itself as a advisable source for purposes of LAI modelling in large areas. Until now there has been very little research to compare LAI estimated by the two different approaches. Indirect measurements of LAI using hemispherical photography are based on the transmission of solar radiation through the vegetation. It can thus be assumed that the same is true for the penetration of LiDAR laser beams through the vegetation canopy. In this study we use ALS based LiDAR penetration index (LPI) and ground based measurement of LAI obtained from hemispherical photographs as a reference in-situ method. Several regression models describing the corellation LAI and LPI were developed with various coefficients of determination ranging up to 0,81. All models were validated and based on the tests performed, no errors were drawn that would affect their credibility.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inversion of Forest Leaf Area Index Based on Lidar Data

Leaf area index (LAI) is an important parameter of vegetation ecosystems, which can reflect the growth status of vegetation, and its inversion result has important significance on forestry system. The inversion values of forest LAI exists a certain deviation using traditional method. The airborne LiDAR technology adopts a new type of aerial earth observation method and makes it possible to esti...

متن کامل

Testing the Suitability of a Terrestrial 2D LiDAR Scanner for Canopy Characterization of Greenhouse Tomato Crops

Canopy characterization is essential for pesticide dosage adjustment according to vegetation volume and density. It is especially important for fresh exportable vegetables like greenhouse tomatoes. These plants are thin and tall and are planted in pairs, which makes their characterization with electronic methods difficult. Therefore, the accuracy of the terrestrial 2D LiDAR sensor is evaluated ...

متن کامل

Estimating Leaf Area Density of Individual Trees Using the Point Cloud Segmentation of Terrestrial LiDAR Data and a Voxel-Based Model

The leaf area density (LAD) within a tree canopy is very important for the understanding and modeling of photosynthetic studies of the tree. Terrestrial light detection and ranging (LiDAR) has been applied to obtain the three-dimensional structural properties of vegetation and estimate the LAD. However, there is concern about the efficiency of available approaches. Thus, the objective of this s...

متن کامل

Leaf Area Index (LAI) Estimation in Boreal Mixedwood Forest of Ontario, Canada Using Light Detection and Ranging (LiDAR) and WorldView-2 Imagery

Leaf Area Index (LAI) is an important input variable for forest ecosystem modeling as it is a factor in predicting productivity and biomass, two key aspects of forest health. Current in situ methods of determining LAI are sometimes destructive and generally very time consuming. Other LAI derivation methods, mainly satellite-based in nature, do not provide sufficient spatial resolution or the pr...

متن کامل

Using airborne lidar to predict Leaf Area Index in cottonwood trees and refine riparian water-use estimates

Estimation of riparian forest structural attributes, such as the Leaf Area Index (LAI), is an important step in identifying the amount of water use in riparian forest areas. In this study, small-footprint lidar data were used to estimate biophysical properties of young, mature, and old cottonwood trees in the Upper San Pedro River Basin, Arizona, USA. Canopy height and maximum and mean laser he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014