The RNA-binding protein Rumpelstiltskin antagonizes gypsy chromatin insulator function in a tissue-specific manner.
نویسندگان
چکیده
Chromatin insulators are DNA-protein complexes that are situated throughout the genome that are proposed to contribute to higher-order organization and demarcation into distinct transcriptional domains. Mounting evidence in different species implicates RNA and RNA-binding proteins as regulators of chromatin insulator activities. Here, we identify the Drosophila hnRNP M homolog Rumpelstiltskin (Rump) as an antagonist of gypsy chromatin insulator enhancer-blocking and barrier activities. Despite ubiquitous expression of Rump, decreasing Rump levels leads to improvement of barrier activity only in tissues outside of the central nervous system (CNS). Furthermore, rump mutants restore insulator body localization in an insulator mutant background only in non-CNS tissues. Rump associates physically with core gypsy insulator proteins, and chromatin immunoprecipitation and sequencing analysis of Rump demonstrates extensive colocalization with a subset of insulator sites across the genome. The genome-wide binding profile and tissue specificity of Rump contrast with that of Shep, a recently identified RNA-binding protein that antagonizes gypsy insulator activity primarily in the CNS. Our findings indicate parallel roles for RNA-binding proteins in mediating tissue-specific regulation of chromatin insulator activity.
منابع مشابه
Tissue-Specific Regulation of Chromatin Insulator Function
Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type-specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila....
متن کاملmetaseq: a Python package for integrative genome-wide analysis reveals relationships between chromatin insulators and associated nuclear mRNA
Here we introduce metaseq, a software library written in Python, which enables loading multiple genomic data formats into standard Python data structures and allows flexible, customized manipulation and visualization of data from high-throughput sequencing studies. We demonstrate its practical use by analyzing multiple datasets related to chromatin insulators, which are DNA-protein complexes pr...
متن کاملNew transcriptional roles for the classic Drosophila insulator protein Suppressor of Hairy-wing
The Drosophila Su(Hw) protein is a multi-zinc finger DNA binding factor required for the gypsy insulator function. At the gypsy element, Su(Hw) recruits partners Centrosomal Protein of 190 kD (CP190) and Modifier of mdg4 67.2 kD isoform (Mod67.2), which are required for the enhancer blocking and barrier functions of the insulator. Our genome-wide studies have identified thousands of endogenous ...
متن کاملThe gypsy insulator of Drosophila affects chromatin structure in a directional manner.
Chromatin insulators are thought to regulate gene expression by establishing higher-order domains of chromatin organization, although the specific mechanisms by which these sequences affect enhancer-promoter interactions are not well understood. Here we show that the gypsy insulator of Drosophila can affect chromatin structure. The insulator itself contains several DNase I hypersensitive sites ...
متن کاملThe centrosomal protein CP190 is a component of the gypsy chromatin insulator.
Chromatin insulators, or boundary elements, affect promoter-enhancer interactions and buffer transgenes from position effects. The gypsy insulator of Drosophila is bound by a protein complex with two characterized components, the zinc finger protein Suppressor of Hairy-wing [Su(Hw)] and Mod(mdg4)2.2, which is one of the multiple spliced variants encoded by the modifier of mdg4 [mod(mdg4)] gene....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of cell science
دوره 127 Pt 13 شماره
صفحات -
تاریخ انتشار 2014