Music Genre Categorization in Humans and Machines

نویسندگان

  • Enric Guaus
  • Perfecto Herrera
چکیده

Music Genre Classification is one of the most active tasks in Music Information Retrieval (MIR). Many successful approaches can be found in literature. Most of them are based on Machine Learning algorithms applied to different audio features automatically computed for a specific database. But there is no computational model that explains how musical features are combined in order to yield genre decision in humans. In this work we present a listening experiment where audio has been altered in order to preserve some properties of music (rhythm, harmony, etc) but at the same time degrading other ones. Results are compared with a series of state-of-the-art genre classifiers based on these musical properties and we draw some lessons from that comparison.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sponsored by ISM 2008 Tenth IEEE International Symposium on Multimedia 15 - 17 December 2008 ● Berkeley , Californ a , USA

This paper presents the results of the application of a feature selection procedure to an automatic music genre classification system. The classification system is based on the use of multiple feature vectors and an ensemble approach, according to time and space decomposition strategies. Feature vectors are extracted from music segments from the beginning, middle and end of the original music s...

متن کامل

Music Genre Classification Using Text Categorization Method

Automatic music genre classification is one of the most challenging problems in music information retrieval and management of digital music database. In this paper, we propose a new method to classify music genres using text categorization methods. Differing from previous solutions which were mainly based on analysis on acoustic or symbolic audio signal, here we consider music as a text-like se...

متن کامل

Musical Genre Categorization Using Support Vector Machines

This automatic genre classification project can be divided into two steps. The first step is feature extraction. In [1], the author suggested several features which can be used to characterize the music, such as Time Domain Zero Crossings, Mel-Frequency Cepstral Coefficients, and Spectral Centroid and so on. In [2], Aucouturier and Pachet separated all music features into three sets: timbre rel...

متن کامل

Musical genre classification using support vector machines

Automatic musical genre classification is very useful for music indexing and retrieval. In this paper, an efficient and effective automatic musical genre classification approach is presented. A set of features is extracted and used to characterize music content. A multi-layer classifier based on support vector machines is applied to musical genre classification. Support vector machines are used...

متن کامل

شناسایی خودکار سبک موسیقی

Nowadays, automatic analysis of music signals has gained a considerable importance due to the growing amount of music data found on the Web. Music genre classification is one of the interesting research areas in music information retrieval systems. In this paper several techniques were implemented and evaluated for music genre classification including feature extraction, feature selection and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006