Streptozotocin induces G2 arrest in skeletal muscle myoblasts and impairs muscle growth in vivo.
نویسندگان
چکیده
Streptozotocin (STZ) is used extensively to induce pancreatic beta-cell death and ultimately diabetes mellitus in animal models. However, the direct effects of STZ on muscle are largely unknown. To delineate the effects of STZ from the effects of hypoinsulinemia/hyperglycemia, we injected young rats with 1) saline (control), 2) STZ (120 mg/kg) or 3) STZ and insulin (STZ-INS; to maintain euglycemia). STZ rats demonstrated significantly elevated blood glucose throughout the 48-h protocol, while control and STZ-INS rats were euglycemic. Body mass increased in control (13 +/- 4 g), decreased by 19 +/- 2 g in STZ and remained unchanged in STZ-INS rats (-0.3 +/- 2 g). Cross-sectional areas of gastrocnemius muscle fibers were smaller in STZ vs. control (1,480 +/- 149 vs. 1,870 +/- 40 microm(2), respectively; P < 0.05) and insulin treatment did not rescue this defect (STZ-INS: 1,476 +/- 143 microm(2)). Western blot analysis revealed a detectable increase in ubiquitinated proteins in the STZ skeletal muscles compared with control and STZ-INS. To further define the effects of STZ on skeletal muscle, independent of hyperglycemia, myoblasts were exposed to varying doses of STZ (0.25-3.0 mg/ml) in vitro. Both acute and chronic exposures of STZ significantly impaired proliferative capacity in a dose-dependent manner. Within STZ-treated myoblasts, increased reactive oxygen species was associated with significant G(2)/M phase cell-cycle arrest. Taken together, our findings show that the effects of STZ are not beta-cell specific and reveal that STZ should not be used for studies examining diabetic myopathy.
منابع مشابه
Ursolic Acid Improve Skeletal Muscle Hypertrophy by Increasing of PAX7, Myod and Myogenin Expression and Satellite Cells Proliferation in Native Broiler Chickens
Ursolic acid (UA) is known as a naturally occurring triterpene pentacyclic compound in some medicinal herbs including savory that affects the skeletal muscle. In the current study, the effect of UA was evaluated on C2C12 cells and satellite cells (SCs) isolated from native broiler chicks. First in the in vitro experiment, the C2C12 cell line obtained from the Stem Cell Technology Research Cente...
متن کاملUrsolic acid induces myoglobin expression and skeletal muscle remodeling in mice
Introduction: Ursolic Acid (UA) is a lipophilic triterpenoid compound, found in large amounts in apple peel. Anabolic effects of UA on the skeletal muscle and the role of this tissue as a key regulator of systematic aging aroused this question in mind whether UA might amend skeletal muscle performances such as myoglobin expression and also whether it switches skeletal muscle fibers from glyc...
متن کاملThe requirement of Mettl3-promoted MyoD mRNA maintenance in proliferative myoblasts for skeletal muscle differentiation
Myogenic progenitor/stem cells retain their skeletal muscle differentiation potential by maintaining myogenic transcription factors such as MyoD. However, the mechanism of how MyoD expression is maintained in proliferative progenitor cells has not been elucidated. Here, we found that MyoD expression was reduced at the mRNA level by cell cycle arrest in S and G2 phases, which in turn led to the ...
متن کاملThe effect of resistance exercise on oxidative stress in cardiac and skeletal muscle tissues of streptozotocin-induced diabetic rats
Abstract Background and Objective: It has been shown that oxidative stress increases in diabetes and it has an important role in its development and subsequent complications. Thus, the aim of this study was to investigate the effect of acute resistance exercise on oxidative stress in skeletal muscle and cardiac tissues of streptozotocin-induced diabetic rats. Materials and Methods: Twenty male ...
متن کاملDevelopmental Programming in Response to Intrauterine Growth Restriction Impairs Myoblast Function and Skeletal Muscle Metabolism
Fetal adaptations to placental insufficiency alter postnatal metabolic homeostasis in skeletal muscle by reducing glucose oxidation rates, impairing insulin action, and lowering the proportion of oxidative fibers. In animal models of intrauterine growth restriction (IUGR), skeletal muscle fibers have less myonuclei at birth. This means that myoblasts, the sole source for myonuclei accumulation ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 292 3 شماره
صفحات -
تاریخ انتشار 2007