Noncanonical Wnt signaling promotes apoptosis in thymocyte development

نویسندگان

  • Huiling Liang
  • Andrew H. Coles
  • Zhiqing Zhu
  • Jennifer Zayas
  • Roland Jurecic
  • Joonsoo Kang
  • Stephen N. Jones
چکیده

The Wnt-beta-catenin signaling pathway has been shown to govern T cell development by regulating the growth and survival of progenitor T cells and immature thymocytes. We explore the role of noncanonical, Wnt-Ca(2+) signaling in fetal T cell development by analyzing mice deficient for Wnt5a. Our findings reveal that Wnt5a produced in the thymic stromal epithelium does not alter the development of progenitor thymocytes, but regulates the survival of alphabeta lineage thymocytes. Loss of Wnt5a down-regulates Bax expression, promotes Bcl-2 expression, and inhibits apoptosis of CD4(+)CD8(+) thymocytes, whereas exogenous Wnt5a increases apoptosis of fetal thymocytes in culture. Furthermore, Wnt5a overexpression increases apoptosis in T cells in vitro and increases protein kinase C (PKC) and calmodulin-dependent kinase II (CamKII) activity while inhibiting beta-catenin expression and activity. Conversely, Wnt5a deficiency results in the inhibition of PKC activation, decreased CamKII activity, and elevation of beta-catenin amounts in thymocytes. These results indicate that Wnt5a induction of the noncanonical Wnt-Ca(2+) pathway alters canonical Wnt signaling and is critical for normal T cell development.

منابع مشابه

Interaction of viral oncogenic proteins with the Wnt signaling pathway

It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...

متن کامل

Noncanonical Wnt Signaling Promotes Obesity-Induced Adipose Tissue Inflammation and Metabolic Dysfunction Independent of Adipose Tissue Expansion

Adipose tissue dysfunction plays a pivotal role in the development of insulin resistance in obese individuals. Cell culture studies and gain-of-function mouse models suggest that canonical Wnt proteins modulate adipose tissue expansion. However, no genetic evidence supports a role for endogenous Wnt proteins in adipose tissue dysfunction, and the role of noncanonical Wnt signaling remains large...

متن کامل

Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development

Wnt signaling is a key regulator of vertebrate heart development; however, specific roles for human cardiomyocyte development remain uncertain. Here we use human embryonic stem cells (hESCs) to analyze systematically in human cardiomyocyte development the expression of endogenous Wnt signaling components, monitor pathway activity, and dissect stage-specific requirements for canonical and noncan...

متن کامل

Wnt5a Increases Properties of Lung Cancer Stem Cells and Resistance to Cisplatin through Activation of Wnt5a/PKC Signaling Pathway

The development of chemoresistance to cisplatin regimens causes a poor prognosis in patients with advanced NSCLC. The role of noncanonical Wnt signaling in the regulation of properties of lung cancer stem cells and chemoresistance was interrogated, by accessing capacities of cell proliferation, migration, invasion, and clonogenicity as well as the apoptosis in A549 cell lines and cisplatin-resi...

متن کامل

Ehrlichia chaffeensis Exploits Canonical and Noncanonical Host Wnt Signaling Pathways To Stimulate Phagocytosis and Promote Intracellular Survival.

Ehrlichia chaffeensis invades and survives in phagocytes by modulating host cell processes and evading innate defenses, but the mechanisms are not fully defined. Recently we have determined that E. chaffeensis tandem repeat proteins (TRPs) are type 1 secreted effectors involved in functionally diverse interactions with host targets, including components of the evolutionarily conserved Wnt signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 204  شماره 

صفحات  -

تاریخ انتشار 2007