Experimental research of chip formation mechanism during high speed machining of hardened steel
نویسندگان
چکیده
The development of chip morphology, critical cutting conditions of serrated chip formation and cutting forces were observed and measured by high speed machining experiment for 30CrNi3MoV hardened steel. Results show that the cutting speed and rake angle are leading factors to influence chip morphology and cutting forces. With the increase of cutting speed, the continuous band chip transforms into serrated chip at a certain critical value. As the rake angle is changed from positive to negative, the critical cutting speed significantly decreases, the cutting forces abruptly reduces when the serrated chip forms. The results from predicting critical cutting speed using the critical cutting condition criterion of adiabatic shear in metal cutting process show that the leading reason of serrated chip formation is that the adiabatic shear fracture repeatedly occurs in the primary shear zone.
منابع مشابه
Finite Element Simulation and Experiment of Chip Formation Process during High Speed Machining of AISI 1045 Hardened Steel
As an advanced manufacturing technology which has been developed rapidly in recent years, high speed machining is widely applied in many industries. The chip formation during high speed machining is a complicated material deformation and removing process. In research area of high speed machining, the prediction of chip morphology is a hot and difficult topic. A finite element method based on th...
متن کاملExperimental Study & Modeling of Surface Roughness in Turning of Hardened AISI 4340 Steel Using Coated Carbide Inserted
Turning of hardened steels using a single point cutting tool has replaced the cylindrical grinding now as it offers attractive benefits in terms of lower equipment costs, shorter set up time, fewer process setups, higher material removal rate, better surface quality and elimination of cutting fluids compared to cylindrical grinding. In order to obtain desired surface quality by machining, pr...
متن کاملSurface Roughness, Machining Force and FlankWear in Turning of Hardened AISI 4340 Steel with Coated Carbide Insert: Cutting Parameters Effects
The current experimental study is to investigate the effects of process parameters (cutting speed, feed rate and depth of cut) on performance characteristics (surface roughness, machining force and flank wear) in hard turning of AISI 4340 steel with multilayer CVD (TiN/TiCN/Al2O3) coated carbide insert. Combined effects of cutting parameter (v, f, d) on performance outputs (Ra, Fm and VB) ar...
متن کاملTowards sustainable machining of 17-4 PH stainless steel using hybrid MQL-hot turning process
The use of a minimum quantity of lubrication (MQL) with extremely low consumption of lubricant in machining processes has been reported as a technologically and environmentally feasible alternative to conventional flood cooling. In hot machining, the external heat source is applied during machining that will assist to increase machining performance. Many external heating techniques are availabl...
متن کاملInfluence of the Tool Edge Geometry on Specific Cutting Energy at High- Speed Cutting
This paper presents specific cutting energy measurements as a function of the cutting speed and tool cutting edge geometry. The experimental work was carried out on a vertical CNC machining center with 7,500 rpm spindle rotation and 7.5 kW power. Hardened steels ASTM H13 (50 HRC) were machined at conventional cutting speed and high-speed cutting (HSC). TiN coated carbides with seven different g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IJCAET
دوره 3 شماره
صفحات -
تاریخ انتشار 2011