High Order Neural Networks for Efficient Associative Memory Design
نویسندگان
چکیده
We propose learning rules for recurrent neural networks with high-order interactions between some or all neurons. The designed networks exhibit the desired associative memory function: perfect storage and retrieval of pieces of information and/or sequences of information of any complexity.
منابع مشابه
Soft Margin Training for Associative Memories Implemented by Recurrent Neural Networks
In this paper, the authors discuss a new synthesis approach to train associative memories, based on recurrent neural networks (RNNs). They propose to use soft margin training for associative memories, which is efficient when training patterns are not all linearly separable. On the basis of the soft margin algorithm used to train support vector machines (SVMs), the new algorithm is developed in ...
متن کاملVGLADs: The Efficient Implementation of Binary Neural Networks
In the paper we describe a device based upon logic array principles but which is capable of providing many large functions. A device providing 2 of 2 variables is readily achievable with an evaluation time of the order of tens of milliseconds. By suitable programming the device is capable of emulating the function of binary weighted neural networks. Hence we are currently implementing the ADAM ...
متن کاملA Self-Reconstructing Algorithm for Single and Multiple-Sensor Fault Isolation Based on Auto-Associative Neural Networks
Recently different approaches have been developed in the field of sensor fault diagnostics based on Auto-Associative Neural Network (AANN). In this paper we present a novel algorithm called Self reconstructing Auto-Associative Neural Network (S-AANN) which is able to detect and isolate single faulty sensor via reconstruction. We have also extended the algorithm to be applicable in multiple faul...
متن کاملSEISMIC DESIGN OF DOUBLE LAYER GRIDS BY NEURAL NETWORKS
The main contribution of the present paper is to train efficient neural networks for seismic design of double layer grids subject to multiple-earthquake loading. As the seismic analysis and design of such large scale structures require high computational efforts, employing neural network techniques substantially decreases the computational burden. Square-on-square double layer grids with the va...
متن کاملSpecification and implementation of a digital Hopfield-type associative memory with on-chip training
The definition of the requirements for the design of a neural network associative memory, with on-chip training, in standard digital CMOS technology is addressed. Various learning rules that can be integrated in silicon and the associative memory properties of the resulting networks are investigated. The relationships between the architecture of the circuit and the learning rule are studied in ...
متن کامل