The Asynchronous PALM Algorithm for Nonsmooth Nonconvex Problems

نویسنده

  • Damek Davis
چکیده

We introduce the Asynchronous PALM algorithm, a new extension of the Proximal Alternating Linearized Minimization (PALM) algorithm for solving nonsmooth, nonconvex optimization problems. Like the PALM algorithm, each step of the Asynchronous PALM algorithm updates a single block of coordinates; but unlike the PALM algorithm, the Asynchronous PALM algorithm eliminates the need for sequential updates that occur one after the other. Instead, our new algorithm allows each of the coordinate blocks to be updated asynchronously and in any order, which means that any number of computing cores can compute updates in parallel without synchronizing their computations. In practice, this asynchronization strategy often leads to speedups that increase linearly with the number of computing cores. We introduce two variants of the Asynchronous PALM algorithm, one stochastic and one deterministic. In the stochastic and deterministic cases, we show that cluster points of the algorithm are stationary points. In the deterministic case, we show that the algorithm converges globally whenever the KurdykaLojasiewicz property holds for a function closely related to the objective function, and we derive its convergence rate in a common special case. Finally, we provide a concrete case in which our assumptions hold.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

The Sound of APALM Clapping: Faster Nonsmooth Nonconvex Optimization with Stochastic Asynchronous PALM

We introduce the Stochastic Asynchronous Proximal Alternating Linearized Minimization (SAPALM) method, a block coordinate stochastic proximal-gradient method for solving nonconvex, nonsmooth optimization problems. SAPALM is the first asynchronous parallel optimization method that provably converges on a large class of nonconvex, nonsmooth problems. We prove that SAPALM matches the best known ra...

متن کامل

Proximal alternating linearized minimization for nonconvex and nonsmooth problems

We introduce a proximal alternating linearized minimization (PALM) algorithm for solving a broad class of nonconvex and nonsmooth minimization problems. Building on the powerful KurdykaLojasiewicz property, we derive a self-contained convergence analysis framework and establish that each bounded sequence generated by PALM globally converges to a critical point. Our approach allows to analyze va...

متن کامل

Proximal linearized iteratively reweighted least squares for a class of nonconvex and nonsmooth problems

For solving a wide class of nonconvex and nonsmooth problems, we propose a proximal linearized iteratively reweighted least squares (PL-IRLS) algorithm. We first approximate the original problem by smoothing methods, and second write the approximated problem into an auxiliary problem by introducing new variables. PL-IRLS is then built on solving the auxiliary problem by utilizing the proximal l...

متن کامل

Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization. Part I: Model and Convergence

We propose a novel asynchronous parallel algorithmic framework for the minimization of the sum of a smooth nonconvex function and a convex nonsmooth regularizer, subject to both convex and nonconvex constraints. The proposed framework hinges on successive convex approximation techniques and a novel probabilistic model that captures key elements of modern computational architectures and asynchro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016