Endoplasmic Reticulum Stress-Induced Autophagy Provides Cytoprotection from Chemical Hypoxia and Oxidant Injury and Ameliorates Renal Ischemia-Reperfusion Injury.

نویسندگان

  • Bhavya B Chandrika
  • Cheng Yang
  • Yang Ou
  • Xiaoke Feng
  • Djamali Muhoza
  • Alexandrea F Holmes
  • Sue Theus
  • Sarika Deshmukh
  • Randy S Haun
  • Gur P Kaushal
چکیده

We examined whether endoplasmic reticulum (ER) stress-induced autophagy provides cytoprotection from renal tubular epithelial cell injury due to oxidants and chemical hypoxia in vitro, as well as from ischemia-reperfusion (IR) injury in vivo. We demonstrate that the ER stress inducer tunicamycin triggers an unfolded protein response, upregulates ER chaperone Grp78, and activates the autophagy pathway in renal tubular epithelial cells in culture. Inhibition of ER stress-induced autophagy accelerated caspase-3 activation and cell death suggesting a pro-survival role of ER stress-induced autophagy. Compared to wild-type cells, autophagy-deficient MEFs subjected to ER stress had enhanced caspase-3 activation and cell death, a finding that further supports the cytoprotective role of ER stress-induced autophagy. Induction of autophagy by ER stress markedly afforded cytoprotection from oxidants H2O2 and tert-Butyl hydroperoxide and from chemical hypoxia induced by antimycin A. In contrast, inhibition of ER stress-induced autophagy or autophagy-deficient cells markedly enhanced cell death in response to oxidant injury and chemical hypoxia. In mouse kidney, similarly to renal epithelial cells in culture, tunicamycin triggered ER stress, markedly upregulated Grp78, and activated autophagy without impairing the autophagic flux. In addition, ER stress-induced autophagy markedly ameliorated renal IR injury as evident from significant improvement in renal function and histology. Inhibition of autophagy by chloroquine markedly increased renal IR injury. These studies highlight beneficial impact of ER stress-induced autophagy in renal ischemia-reperfusion injury both in vitro and in vivo.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autophagy decreases alveolar macrophage apoptosis by attenuating endoplasmic reticulum stress and oxidative stress

To study the impact of autophagy on alveolar macrophage apoptosis and its mechanism in the early stages of hypoxia, we established a cell hypoxia-reoxygenation model and orthotopic left lung ischemia-reperfusion model. Rat alveolar macrophages stably expressing RFP-LC3 were treated with autophagy inhibitor (3-methyladenine, 3-MA) or autophagy promoter (rapamycin), followed by hypoxia-reoxygenat...

متن کامل

Berberine Ameliorates Renal Functional Disorders and Pulmonary Tissue Injury Following Renal Ischemia/Reperfusion in Rats

Introduction: This study investigated the effect of berberine on renal dysfunction and histological damages of the lung induced by renal ischemia/ reperfusion at an early stage. Methods: There were four experimental groups of adult male rats (n=7). Seven days before induction of ischemia, the Ber+I/R group received oral (by gavage) berberine (15 mg/kg/day) while the I/R group received distil...

متن کامل

4-Phenylbutyrate protects rat skin flaps against ischemia-reperfusion injury and apoptosis by inhibiting endoplasmic reticulum stress

4‑phenylbutyrate (4‑PBA) is a low molecular weight fatty acid, which has been demonstrated to regulate endoplasmic reticulum (ER) stress. ER stress‑induced cell apoptosis has an important role in skin flap ischemia; however, a pharmacological approach for treating ischemia‑induced ER dysfunction has yet to be reported. In the present study, the effects of 4‑PBA‑induced ER stress inhibition on i...

متن کامل

Gastric peroxisome proliferator activator receptor-γ expression and cytoprotective actions of its ligands against ischemia-reperfusion injury in rats

The beneficial effects by peroxisome proliferator-activated receptor-γ (PPAR-γ) on gastric injury induced by ischemia-reperfusion have been confirmed, however, the precise mechanism of its cytoprotection is not elucidated thoroughly. The aim of the present study was to determine the gastric localization of PPAR-γ expression in the rat gastric mucosa, and to clarify the mechanism of its cytoprot...

متن کامل

Prolyl hydroxylase 2 (PHD2) inhibition protects human renal epithelial cells and mice kidney from hypoxia injury

Prolyl hydroxylase domain protein 2 (PHD2) is a key oxygen sensor, setting low steady-state level of hypoxia-inducible factor-α (HIF-α). Here, we showed that treatment of cobalt chloride (CoCl2), a hypoxia mimic, in HK-2 tubular epithelial cells induced PHD2 and HIF-1/2α expression as well as cell apoptosis and autophagy activation. Three methyladenine (3-MA), the autophagy inhibitor, blocked a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PloS one

دوره 10 10  شماره 

صفحات  -

تاریخ انتشار 2015