Kriging is well-suited to parallelize optimization

نویسندگان

  • David Ginsbourger
  • Rodolphe Le Riche
  • Laurent Carraro
چکیده

Beyond both estalished frameworks of derivative-based descent and stochastic search algorithms, the rise of expensive optimization problems creates the need for new specific approaches and procedures. The word ”expensive” —which refers to price and/or time issues— implies severely restricted budgets in terms of objective function evaluations. Such limitations contrast with the computational burden typically associated with stochastic search techniques, like genetic algorithms. Furthermore, the latter evaluations provide no differential information in a majority of expensive optimization problems, whether the objective function originate from physical or from simulated experiments. Hence there exists a strong motivation for developing derivative-free algorithms, with a particular focus on their optimization performances in a drastically limited number of evaluations. Investigating and implementing adequate strategies constitute a contemporary challenge at the interface between Applied Mathematics and Computational Intelligence, especially when it comes to reducing optimization durations by efficiently taking advantage of parallel computation facilities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Nonconvex Optimization for Simulation-based Problems

In engineering design, an optimized solution often turns out to be suboptimal, when implementation errors are encountered. While the theory of robust convex optimization has taken significant strides over the past decade, all approaches fail if the underlying cost function is not explicitly given; it is even worse if the cost function is nonconvex. In this work, we present a robust optimization...

متن کامل

APPLICATION OF KRIGING METHOD IN SURROGATE MANAGEMENT FRAMEWORK FOR OPTIMIZATION PROBLEMS

In this paper, Kriging has been chosen as the method for surrogate construction. The basic idea behind Kriging is to use a weighted linear combination of known function values to predict a function value at a place where it is not known. Kriging attempts to determine the best combination of weights in order to minimize the error in the estimated function value. Because the actual function value...

متن کامل

Adaptive Experimental Design Applied to an Ergonomics Testing Procedure

Nonlinear constrained optimization algorithms are widely utilized in artifact design. Certain algorithms also lend themselves well to design of experiments (DOE). Adaptive design refers to experimental design where determining where to sample next is influenced by information from previous experiments. We present a constrained optimization algorithm known as superEGO (a variant of the EGO algor...

متن کامل

Robust Optimization for Unconstrained Simulation-Based Problems

In engineering design, an optimized solution often turns out to be suboptimal, when errors are encountered. While the theory of robust convex optimization has taken significant strides over the past decade, all approaches fail if the underlying cost function is not explicitly given; it is even worse if the cost function is nonconvex. In this work, we present a robust optimization method, which ...

متن کامل

Improving an Ergonomics Testing Procedure via Approximation- based Adaptive Experimental Design

Adaptive design refers to experimental design where the next sample point is determined by information from previous experiments. This article presents a constrained optimization algorithm known as superEGO (a variant of the EGO algorithm of Schonlau, Welch, and Jones) that can create adaptive designs using kriging approximations. Our primary goal is to illustrate that superEGO is well-suited t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009