The cryo-EM structure of the Plasmodium falciparum 20S proteasome and its use in the fight against malaria.

نویسندگان

  • Hao Li
  • Matthew Bogyo
  • Paula C A da Fonseca
چکیده

Plasmodium falciparum is the parasite responsible for the most severe form of malaria. Its increasing resistance to existing antimalarials represents a major threat to human health and urges the development of new therapeutic strategies to fight malaria. The proteasome is a protease complex essential in all eukaryotes. Accordingly, inhibition of the Plasmodium 20S proteasome is highly toxic for the parasite at all of its infective and developmental stages. Proteasome inhibitors have antimalarial potential both as curative and transmission blocking agents, but in order to have therapeutic application, they must specifically target the Plasmodium proteasome and not its human counterpart. X-ray crystallography has been widely used to determine structures of yeast and mammalian 20S proteasomes with ligands. However, crystallisation of the Plasmodium proteasome is challenging, as only small quantities of the complex can be directly purified from the parasite. Furthermore, most X-ray structures of proteasome-inhibitor complexes require soaking of crystals with high concentrations of ligand, thus preventing analysis of inhibitor subunit specificity. Instead we chose to determine the Plasmodium falciparum 20S proteasome structure, in the presence of a new rationally designed parasite-specific inhibitor, by high-resolution electron cryo-microscopy and single particle analysis. The resulting map, at a resolution of about 3.6 Å, allows a direct molecular analysis of inhibitor/enzyme interactions. Here we present an overview of this structure, and how it provides valuable information that can be used to assist in the design of improved proteasome inhibitors with the potential to be developed as next-generation antimalarial drugs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-resolution cryo-EM proteasome structures in drug development

With the recent advances in biological structural electron microscopy (EM), protein structures can now be obtained by cryo-EM and single-particle analysis at resolutions that used to be achievable only by crystallographic or NMR methods. We have explored their application to study protein-ligand interactions using the human 20S proteasome, a well established target for cancer therapy that is al...

متن کامل

Antiplasmodial activity and cytotoxicity of ethanol extract of Zea mays root

Objective:Zea mays root decoction that has been traditionally used for the treatment of malaria by various tribes in Nigeria, was evaluated for antimalarial potential against malaria parasites using in vivo and in vitro models. Materials and Methods: The root extract of Zea mays was investigated for antimalarial activity against Plasmodium berghei in mice using rodent malaria models; suppressiv...

متن کامل

Genetic Diversity Block 2 of Surface Protein-1 in Plasmodium Falciparum Merozoite by Nested-PCR Method in Southeastern Iran

Abstract       Background and Objectives: Plasmodium falciparum merozoite surface protein-1 (PfMSP-1) is a promising vaccine against malaria during its blood stages which play an important role in immunity to this disease. Polymorphic nature of this gene is a major obstacle in making an effective vaccine against malaria. In this study, the genetic diversity of Plasmodi...

متن کامل

The Use of Crude Plasmodium falciparum Antigens for Comparison of Antibody Responses in Patients with Mild Malaria vs. Cerebral Malaria

Background: Cerebral malaria (CM) is one of the major causes of death in African populations infected with Plasmodium falciparum. Only 1% of infected subjects develop CM. The reasons for these differences are not fully understood, but it is likely that the host humoral response against blood-stage antigens plays a role in protection from malaria, although the precise targets and mechanisms medi...

متن کامل

Clinical Pharmacology of the Antimalarial Chloroquine in Children and Their Mothers

Plasmodium falciparum, Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are the parasites that infect humans. Plasmodium falciparum and Plasmodium vivax cause most of the malarial infections worldwide. Plasmodium vivax, Plasmodium ovale, Plasmodium malariae, and Plasmodium knowlesi are susceptible to chloroquine. Chloroquine was the world's most widely used antim...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The FEBS journal

دوره 283 23  شماره 

صفحات  -

تاریخ انتشار 2016