Interaction of apo cytochrome c with sulfonated polystyrene nanoparticles.
نویسندگان
چکیده
Stable nanoparticle dispersion in aqueous solutions was obtained with partially sulfonated polystyrene. The hydrophobic association of the backbone chains and phenyl groups is balanced by the electrostatic repulsion of the sulfonate groups on the particle surface. The size distribution of the sulfonated polystyrene particles in relation to concentration, degree of sulfonation and chain length, and pH was characterized by dynamic laser light-scattering. The structure and morphology of the particles were characterized with fluorescence and atom force microscopy. Highly sulfonated polystyrene particles can form large complex particles with positively charged protein, apo cytochrome c. Dynamic laser light-scattering and atom force microscopy studies show that the size and distribution of the complex particles depend on the relative amount of apo cytochrome c and sulfonated polystyrene. When sulfonated polystyrene is in excess, apo cytochrome c interacts with sulfonated polystyrene particles forming stable complexes and excessive sulfonated polystyrene particles bind to the periphery of the complexes preventing them from further aggregation. When apo cytochrome c is in excess, apo cytochrome c links the complexes forming much larger particles. Fluorescence study demonstrates that the hydrophobicity/hydrophility of the complex particles is relative to the ratio of apo cytochrome c and sulfonated polystyrene, degree of sulfonation, and pH. Apo cytochrome c not only can neutralize the negative charges on the surface of sulfonated polystyrene particles, but may also insert into the cores disrupting the original structure of sulfonated polystyrene particles.
منابع مشابه
Structural transformation of cytochrome c and apo cytochrome c induced by sulfonated polystyrene.
The structural transformation of cytochrome c (cyt c) and its heme-free precursor, apo cyt c, induced by negatively charged sulfonated polystyrene (SPS) with different charge density (degree of sulfonation) and chain length was studied to understand the factors that influence the folding and unfolding of the protein. SPS forms stable transparent nanoparticles in aqueous solution. The hydrophobi...
متن کاملFabrication and Characterization of a Conductive Proton Exchange Membrane Based on Sulfonated Polystyrenedivinylbenzene Resin-Polyethylene (SPSDR-PE): Application in Direct Methanol Fuel Cells
A novel proton exchange membrane has been prepared using sulfonated poly(styrene-divinylbenzene) resin(SPSDR)–polyethylene(PE). The membrane is characterized by FT-IR, SEM and TGA/DSC. Water uptake, oxidative resistance, ionic conductivity and methanol permeability are measured to evaluate its performance in a direct methanol fuel cell. The on-set degradation temp...
متن کاملControl of Ionic Interactions in Sulfonated Polystyrene Ionomers by the Use of Alkyl- Substituted Ammonium Counterions
Polystyrenes containing up to about 20 mol % sulfonic acid are reproducibly and readily prepared by the sulfonation of polystyrene at 50°C with acetyl sulfate in 1,2-dichloroethane solution. The metal salts of sulfonated polystyrene possess extremely high melt viscosities and are soluble in single solvents such as toluene and THF only at very low sulfonate levels. Such properties are the result...
متن کاملInteractions between protein and stereoregular polyelectrolyte
Investigations of protein-polyelectrolyte complexes are important in the design of many biomedical applications that include enzyme immobilization, drug delivery, biosensor design, and in bioprocessing where complexation with polyelectrolytes is used to prevent protein aggregation and for protein purification. In this work, we choose to study the effect of polyelectrolyte stereochemistry on the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 20 8 شماره
صفحات -
تاریخ انتشار 2004