From Fork Decoupling to Star-Topology Decoupling
نویسندگان
چکیده
Fork decoupling is a recent approach to exploiting problem structure in state space search. The problem is assumed to take the form of a fork, where a single (large) center component provides preconditions for several (small) leaf components. The leaves are then conditionally independent in the sense that, given a fixed center path π , the compliant leaf moves – those leaf moves enabled by the preconditions supplied along π – can be scheduled independently for each leaf. Fork-decoupled state space search exploits this through conducting a regular search over center paths, augmented with maintenance of the compliant paths for each leaf individually. We herein show that the same ideas apply to much more general star-topology structures, where leaves may supply preconditions for the center, and actions may affect several leaves simultaneously as long as they also affect the center. Our empirical evaluation in planning, super-imposing star topologies by automatically grouping the state variables into suitable components, shows the merits of the approach.
منابع مشابه
Beyond Forks: Finding and Ranking Star Factorings for Decoupled Search
Star-topology decoupling is a recent search reduction method for forward state space search. The idea basically is to automatically identify a star factoring, then search only over the center component in the star, avoiding interleavings across leaf components. The framework can handle complex star topologies, yet prior work on decoupled search considered only factoring strategies identifying f...
متن کاملOptimal characteristics determination of engine mounting system using TRA mode decoupling with emphasis on frequency responses
It is possible to improve vehicle vibration by tuning the parameters of engine mounting system. By optimization of mount characteristics or finding the optimal position of mounts, vibration of the engine and transmitted force from the engine to the chassis can be reduced. This paper examines the optimization of 6-degree-of-freedom engine mounting system based on torque roll axis (TRA) mode deco...
متن کاملImproved Magnetic Levitation Via Online Disturbance Decoupling
Control of magnetic levitation systems suffer from coupled physics regardless of control. Feedback control is used to robustly reject disturbances, but is complicated by this coupling. Improved performance is possible by decoupling dynamic disturbance torque, an attractive solution provided by the physics-based control design methodology. Promising approaches include elimination of virtual-zero...
متن کاملModeling a Robot with Flexible Joints and Decoupling its Equations of Motion
Recently a method has been developed to decouple the equations of motion for multi-rigid body systems. In this paper, the method is first studied, then the equations of motion for a planar two degree-of-freedom robot with flexible joints are carried out using Lagaranges equations and Kanes equation with congruency transformations. Finally, the results obtained from both methods are throroughly ...
متن کاملModeling a Robot with Flexible Joints and Decoupling its Equations of Motion
Recently a method has been developed to decouple the equations of motion for multi-rigid body systems. In this paper, the method is first studied, then the equations of motion for a planar two degree-of-freedom robot with flexible joints are carried out using Lagarange's equations and Kane's equation with congruency transformations. Finally, the results obtained from both methods are throroughl...
متن کامل