Effect of Spatial Smoothing on Task fMRI ICA and Functional Connectivity
نویسندگان
چکیده
Spatial smoothing is a widely used preprocessing step in functional magnetic resonance imaging (fMRI) data analysis. In this work, we report on the spatial smoothing effect on task-evoked fMRI brain functional mapping and functional connectivity. Initially, we decomposed the task fMRI data into a collection of components or networks by independent component analysis (ICA). The designed task paradigm helps identify task-modulated ICA components (highly correlated with the task stimuli). For the ICA-extracted primary task component, we then measured the task activation volume at the task response foci. We used the task timecourse (designed) as a reference to order the ICA components according to the task correlations of the ICA timecourses. With the re-ordered ICA components, we calculated the inter-component function connectivity (FC) matrix (correlations among the ICA timecourses). By repeating the spatial smoothing of fMRI data with a Gaussian smoothing kernel with a full width at half maximum (FWHM) of {1, 3, 6, 9, 12, 15, 20, 25, 30, 35} mm, we measured the spatial smoothing effects. Our results show spatial smoothing reveals the following effects: (1) It decreases the task extraction performance of single-subject ICA more than that of multi-subject ICA; (2) It increases the task volume of multi-subject ICA more than that of single-subject ICA; (3) It strengthens the functional connectivity of single-subject ICA more than that of multi-subject ICA; and (4) It impacts the positive-negative imbalance of single-subject ICA more than that of multi-subject ICA. Our experimental results suggest a 2~3 voxel FWHM spatial smoothing for single-subject ICA in achieving an optimal balance of functional connectivity, and a wide range (2~5 voxels) of FWHM for multi-subject ICA.
منابع مشابه
Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase
Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...
متن کاملDoes the default-mode functional connectivity of the brain correlate with working-memory performances?
The "default-mode" network is an ensemble of cortical regions that are typically deactivated during demanding cognitive tasks in functional magnetic resonance imaging (fMRI) studies. Using functional connectivity analysis, this network can be studied as a "stand-alone" brain system whose functional role is supposed to consist in the dynamic control of intrinsic processing activities like attent...
متن کاملInvestigating the Effect of Music on Spatial Learning in a Virtual Reality Task
Background: Spatial learning and navigation is a fundamental cognitive ability consisting of multiple cognitive components. Despite intensive efforts conducted with the assistance of virtual reality technology and functional Magnetic Resonance Imaging (fMRI) modality, the music effect on this cognition and the involved neuronal mechanisms remain elusive. Objectives: We aimed to investigate the...
متن کاملSACICA: a sparse approximation coefficient-based ICA model for functional magnetic resonance imaging data analysis.
Independent component analysis (ICA) has been widely used in functional magnetic resonance imaging (fMRI) data to evaluate the functional connectivity, which assumes that the sources of functional networks are statistically independent. Recently, many researchers have demonstrated that sparsity is an effective assumption for fMRI signal separation. In this research, we present a sparse approxim...
متن کاملImproving effect size estimation and statistical power with multi-echo fMRI and its impact on understanding the neural systems supporting mentalizing
Functional magnetic resonance imaging (fMRI) research is routinely criticized for being statistically underpowered due to characteristically small sample sizes and much larger sample sizes are being increasingly recommended. Additionally, various sources of artifact inherent in fMRI data can have detrimental impact on effect size estimates and statistical power. Here we show how specific remova...
متن کامل