Non-singular circulant graphs and digraphs

نویسندگان

  • A. K. Lal
  • Satyanarayana Reddy
  • A. K. LAL
چکیده

For a fixed positive integer n, let Wn be the permutation matrix corresponding to the permutation ( 1 2 · · · n− 1 n 2 3 · · · n 1 ) . In this article, it is shown that a symmetric matrix with rational entries is circulant if, and only if, it lies in the subalgebra of Q[x]/〈x−1〉 generated by Wn+W −1 n . On the basis of this, the singularity of graphs on n-vertices is characterized algebraically. This characterization is then extended to characterize the singularity of directed circulant graphs. The kth power matrix W k n+W −k n defines a circulant graph C k n. The results above are then applied to characterize its singularity, and that of its complement graph. The digraph Cr,s,t is defined as that whose adjacency matrix is circulant circ(a), where a is a vector with the first r-components equal to 1, and the next s, t and n− (r+ s+ t) components equal to zero, one, and zero respectively. The singularity of this digraph (graph), under certain conditions, is also shown to depend algebraically upon these parameters. A slight generalization of these graphs are also studied.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognizing Bipartite Incident-Graphs of Circulant Digraphs

Knödel graphs and Fibonacci graphs are two classes of bipartite incident-graph of circulant digraphs. Both graphs have been extensively studied for the purpose of fast communications in networks, and they have deserved a lot of attention in this context. In this paper, we show that there exists an O(n log n)-time algorithm to recognize Knödel graphs, and that the same technique applies to Fibon...

متن کامل

The (\Delta,D) and (\Delta,N) problems for New Amsterdam and Manhattan digraphs

We give a quasi-complete solution of the (∆, N) problem for two well-known families of digraphs used as good models for large interconnection networks. In our study we also relate both families, the New Amsterdam and Manhattan digraphs, with the double-step graphs (or circulant graphs with degree two).

متن کامل

Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory

We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorph...

متن کامل

More skew-equienergetic digraphs

Two digraphs of same order are said to be skew-equienergetic if their skew energies are equal. One of the open problems proposed by Li and Lian was to construct non-cospectral skew-equienergetic digraphs on n vertices. Recently this problem was solved by Ramane et al. In this  paper, we give some new methods to construct new skew-equienergetic digraphs.

متن کامل

Asymptotic Enumeration Theorems for the Numbers of Spanning Trees and Eulerian Trials in Circulant Digraphs & Graphs

In this paper, we consider the asymptotic properties of the numbers of spanning trees and Eulerian trials in circulant digraphs and graphs. Let C(p, s1, s2, . . . , sk) be a directed or undirected circulant graph. Let T (C(p, s1, s2, . . . , sk)) and E(C(p, s1, s2, . . . , sk)) be the numbers ∗This work was partially supported by the Natural Science Foundation of China, email: fjzhang@jingxian....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013