Large-scale investigation of Leishmania interaction networks with host extracellular matrix by surface plasmon resonance imaging.
نویسندگان
چکیده
We have set up an assay to study the interactions of live pathogens with their hosts by using protein and glycosaminoglycan arrays probed by surface plasmon resonance imaging. We have used this assay to characterize the interactions of Leishmania promastigotes with ~70 mammalian host biomolecules (extracellular proteins, glycosaminoglycans, growth factors, cell surface receptors). We have identified, in total, 27 new partners (23 proteins, 4 glycosaminoglycans) of procyclic promastigotes of six Leishmania species and 18 partners (15 proteins, 3 glycosaminoglycans) of three species of stationary-phase promastigotes for all the strains tested. The diversity of the interaction repertoires of Leishmania parasites reflects their dynamic and complex interplay with their mammalian hosts, which depends mostly on the species and strains of Leishmania. Stationary-phase Leishmania parasites target extracellular matrix proteins and glycosaminoglycans, which are highly connected in the extracellular interaction network. Heparin and heparan sulfate bind to most Leishmania strains tested, and 6-O-sulfate groups play a crucial role in these interactions. Numerous Leishmania strains bind to tropoelastin, and some strains are even able to degrade it. Several strains interact with collagen VI, which is expressed by macrophages. Most Leishmania promastigotes interact with several regulators of angiogenesis, including antiangiogenic factors (endostatin, anastellin) and proangiogenic factors (ECM-1, VEGF, and TEM8 [also known as anthrax toxin receptor 1]), which are regulated by hypoxia. Since hypoxia modulates the infection of macrophages by the parasites, these interactions might influence the infection of host cells by Leishmania.
منابع مشابه
Behenic Acid Monolayer and Bilayer Assemblies- A Study of Concanavalin A (Con A) Adsorption and its Interaction with Dextran Using Surface Plasmon Resonance Spectroscopy and Microscopy
Deposition of behenic acid (B.A) mono and bilayers onto gold coated surfaces was performed by Langmuir-Blodget dip-casting technique. Surface Plasmon resonance (SPR) and ellipsometry methods were employed for investigation of the monolayer and bilayer films. The adsorption of the biologically important molecule Concanavalin A (Con A) from bulk solution to these monolayers and bilayers as we...
متن کاملInteraction of human fibronectin with Candida glabrata epithelial adhesin 6 (Epa6).
Adherence of pathogens to extracellular matrix proteins and host cells is one of the essential steps in the microbial colonization of the human organism. The adhesion of C. glabrata, i.e. the second major causative agent of human disseminated candidiases after C. albicans, to the host epithelium mainly engages specific fungal cell wall proteins - epithelial adhesins (Epa) - in particular, Epa1,...
متن کاملOn-chip Electrokinetic Sample Focus- Ing for Microarray-based Biomolecular Interaction Assays
Imaging surface plasmon resonance (iSPR) is a label-free microarray based technique in which multiple biomolecular interactions can be monitored simultaneously. In this work, we present an integrated electrokinetic focusing microfluidic chip and iSPR system suitable for large-scale microarray applications.
متن کاملTunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کاملStreptococcus pneumoniae choline-binding protein E interaction with plasminogen/plasmin stimulates migration across the extracellular matrix.
The virulence mechanisms leading Streptococcus pneumoniae to convert from nasopharyngeal colonization to a tissue-invasive phenotype are still largely unknown. Proliferation of infection requires penetration of the extracellular matrix, which occurs by recruitment of host proteases to the bacterial cell surface. We present evidence supporting the role of choline-binding protein E (CBPE) (a memb...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Infection and immunity
دوره 82 2 شماره
صفحات -
تاریخ انتشار 2014