A mouse genetic model for familial cholestasis caused by ATP8B1 mutations reveals perturbed bile salt homeostasis but no impairment in bile secretion.
نویسندگان
چکیده
Mutations in ATP8B1, a broadly expressed P-type ATPase, result, through unknown mechanisms, in disorders of bile secretion. These disorders vary in severity from mild and episodic to progressive with liver failure. We generated Atp8b1G308V/G308V mutant mice, which carry a mutation orthologous to that present in homozygous form in patients from the Amish index kindred for severe ATP8B1 disease. In contrast to human patients, Atp8b1(G308V/G308V) mice had unimpaired bile secretion and no liver damage, but showed mild abnormalities including depressed weight at weaning and elevated serum bile salt levels. We challenged the hepatobiliary metabolism of Atp8b1G308V/G308V mice by administering exogenous bile salts. Upon bile salt feeding, Atp8b1G308V/G308V mice, but not wild-types, demonstrated serum bile salt accumulation, hepatic injury and expansion of the systemic bile salt pool. Unexpectedly, this failure of bile salt homeostasis occurred in the absence of any defect in hepatic bile secretion. Upon infusion of a hydrophobic bile salt, wild-type mice developed cholestasis while Atp8b1G308V/G308V mice maintained high biliary output and more extensively rehydroxylated the infused bile salt. Increased bile salt hydroxylation, which reduces bile salt toxicity, may explain the milder phenotype in Atp8b1G308V/G308V mice compared with humans with the equivalent mutation. These results demonstrate the key role of Atp8b1 in bile salt homeostasis and highlight the importance of bile salt hydroxylation in the prevention of cholestasis. The mouse phenotype reveals that loss of Atp8b1 disrupts bile salt homeostasis without impairment of canalicular bile secretion; in humans this process is likely to be obscured by early onset of severe liver disease.
منابع مشابه
Clinical variability of mutations in the ABCB11 gene: a case report.
Progressive familial intrahepatic cholestasis (PFIC) includes a group of infrequent genetic diseases with autosomal recessive heredity, characterized by intrahepatic cholestasis, usually in childhood and in adolescence. It is caused by defective bile salt secretion and other bile components. The progression leading to liver failure and cirrhosis usually appears in the first few decades of life....
متن کاملGenetics and Molecular Modeling of New Mutations of Familial Intrahepatic Cholestasis in a Single Italian Center
Familial intrahepatic cholestases (FICs) are a heterogeneous group of autosomal recessive disorders of childhood that disrupt bile formation and present with cholestasis of hepatocellular origin. Three distinct forms are described: FIC1 and FIC2, associated with low/normal GGT level in serum, which are caused by impaired bile salt secretion due to defects in ATP8B1 encoding the FIC1 protein and...
متن کاملCan genetic testing guide the therapy of cholestatic pruritus? A case of benign recurrent intrahepatic cholestasis type 2 with severe nasobiliary drainage‐refractory itch
Benign recurrent intrahepatic cholestasis (BRIC) is a peculiar familial disease caused by mutations of the genes encoding hepatocanalicular flippase for phosphatidylserine (ATP8B1; BRIC type 1) or the bile salt export pump (ABCB11; BRIC type 2). Here, we report on a patient with nasobiliary drainage-refractory BRIC type 2 who improved under plasma separation and anion absorption therapy. We als...
متن کاملIn-silico Evaluation of Rare Codons and their Positions in the Structure of ATP8b1 Gene
Background: Progressive familial intrahepatic cholestases (PFIC) are a spectrum of autosomal progressive liver diseases developing to end-stage liver disease. ATP8B1 deficiency caused by mutations in ATP8B1 gene encoding a P-type ATPase leads to PFIC1. The gene for PFIC1 has been mapped on a 19-cM region of 18q21-q22, and a gene defect in ATP8B1 can cause deregulations in bile salt transporters...
متن کاملReduced hepatic expression of farnesoid X receptor in hereditary cholestasis associated to mutation in ATP8B1.
Farnesoid X receptor (FXR) is a transcription factor that controls bile acid homeostasis. The phenotype of Fxr null mice is characterized by hypercholanaemia, impaired secretion of bile acids and failure to thrive. Human disorders with these characteristics include FIC1 disease (caused by mutations in ATP8B1, which encodes a putative aminophospholipid translocase, FIC1, whose function in bile h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human molecular genetics
دوره 13 8 شماره
صفحات -
تاریخ انتشار 2004