New evidence for hybrid acrylic/TiO2 films inducing bacterial inactivation under low intensity simulated sunlight.

نویسندگان

  • Audrey Bonnefond
  • Edurne González
  • Jose María Asua
  • Jose Ramon Leiza
  • John Kiwi
  • Cesar Pulgarin
  • Sami Rtimi
چکیده

This study addresses the preparation and characterization of hybrid films prepared from Titanium dioxide (TiO2) Pickering stabilized acrylic polymeric dispersion as well as their bacterial inactivation efficiency under sunlight irradiation. Complete bacterial inactivation under low intensity simulated solar light irradiation (55 mW/cm(2)) was observed within 240 min for the films containing 10 weight based on monomers (wbm) % of TiO2, whereas 360 min were needed for the films containing 20 wbm% of TiO2. The hybrid films showed repetitive Escherichia coli (E. coli) inactivation under light irradiation. TiO2 released from the films surfaces was measured by inductively coupled plasma mass spectrometry (IPC-MS), obtaining values of ∼ 0.5 and 1 ppb/cm(2) for the films containing 10 wbm% and 20 wbm% of TiO2, respectively, far below the allowed cytotoxicity level for TiO2 (200 ppb). Transmission electron microscopy (TEM) of the hybrid films showed that TiO2 nanoparticles (NPs) were located at the polymer particle's surface forming a continuous inorganic network inside the film matrix. Atomic force microscopy (AFM) images showed differences in the TiO2 dispersion between the air-film and film-substrate interfaces. Films containing 10 wbm% of TiO2 had higher roughness (Rg) at both interfaces than the one containing 20 wbm% of TiO2 inducing an increase in the bacterial adhesion as well as the bacterial inactivation kinetics. The highly oxidative OH-radicals participating in the bacterial inactivation were determined by fluorescence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New evidence for Cu-decorated binary-oxides mediating bacterial inactivation/mineralization in aerobic media.

Binary oxide semiconductors TiO2-ZrO2 and Cu-decorated TiO2-ZrO2 (TiO2-ZrO2-Cu) uniform films were sputtered on polyester (PES). These films were irradiated under low intensity solar simulated light and led to bacterial inactivation in aerobic and anaerobic media as evaluated by CFU-plate counting. But bacterial mineralization was only induced by TiO2-ZrO2-Cu in aerobic media. The highly oxidat...

متن کامل

Effect of surface pretreatment of TiO2 films on interfacial processes leading to bacterial inactivation in the dark and under light irradiation.

Evidence is presented for radio-frequency plasma pretreatment enhancing the amount and adhesion of TiO2 sputtered on polyester (PES) and on polyethylene (PE) films. Pretreatment is necessary to attain a suitable TiO2 loading leading to an acceptable Escherichia coli reduction kinetics in the dark or under light irradiation for PES-TiO2 and PE-TiO2 samples. The amount of TiO2 on the films was mo...

متن کامل

Inactivation of E. Coli in Water Using Photocatalytic, Nanostructured Films Synthesized by Aerosol Routes

TiO2 nanostructured films were synthesized by an aerosol chemical vapor deposition (ACVD) method with different controlled morphologies: columnar, granular, and branched structures for the photocatalytic inactivation of Escherichia coli (E. coli) in water. Effects of film morphology and external applied voltage on inactivation rate were investigated. As-prepared films were characterized using s...

متن کامل

Effect of TiO2 Nanofiber Density on Organic-Inorganic Based Hybrid Solar Cells (RESEARCH NOTE)

Abstract In this work, a comparative study of hybrid solar cells based on P3HT and TiO2 nanofibers was accomplished. Electrospinning, a low cost production method for large area nanofibrous films, was employed to fabricate the organic-inorganic hybrid solar cells based on poly (3-hexylthiophene) and TiO2 nanofibers. The performance of the hybrid solar cells was analyzed for four density levels ...

متن کامل

Recent Developments in Accelerated Antibacterial Inactivation on 2D Cu-Titania Surfaces under Indoor Visible Light

This review focuses on Cu/TiO2 sequentially sputtered and Cu-TiO2 co-sputtered catalytic/photocatalytic surfaces that lead to bacterial inactivation, discussing their stability, synthesis, adhesion, and antibacterial kinetics. The intervention of TiO2, Cu, and the synergic effect of Cu and TiO2 on films prepared by a colloidal sol-gel method leading to bacterial inactivation is reviewed. Proces...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Colloids and surfaces. B, Biointerfaces

دوره 135  شماره 

صفحات  -

تاریخ انتشار 2015