Interactive effects of oxygen, carbon dioxide and flow on photosynthesis and respiration in the scleractinian coral Galaxea fascicularis.
نویسندگان
چکیده
Rates of dark respiration and net photosynthesis were measured for six replicate clonal fragments of the stony coral Galaxea fascicularis (Linnaeus 1767), which were incubated under 12 different combinations of dissolved oxygen (20%, 100% and 150% saturation), dissolved carbon dioxide (9.5 and 19.1 µmol l-1) and water flow (1-1.6 versus 4-13 cm s-1) in a repeated measures design. Dark respiration was enhanced by increased flow and increased oxygen saturation in an interactive way, which relates to improved oxygen influx into the coral tissue. Oxygen saturation did not influence net photosynthesis: neither hypoxia nor hyperoxia affected net photosynthesis, irrespective of flow and pH, which suggests that hyperoxia does not induce high rates of photorespiration in this coral. Flow and pH had a synergistic effect on net photosynthesis: at high flow, a decrease in pH stimulated net photosynthesis by 14%. These results indicate that for this individual of G. fascicularis, increased uptake of carbon dioxide rather than increased efflux of oxygen explains the beneficial effect of water flow on photosynthesis. Rates of net photosynthesis measured in this study are among the highest ever recorded for scleractinian corals and confirm a strong scope for growth.
منابع مشابه
Oxygen and Heterotrophy Affect Calcification of the Scleractinian Coral Galaxea fascicularis
Heterotrophy is known to stimulate calcification of scleractinian corals, possibly through enhanced organic matrix synthesis and photosynthesis, and increased supply of metabolic DIC. In contrast to the positive long-term effects of heterotrophy, inhibition of calcification has been observed during feeding, which may be explained by a temporal oxygen limitation in coral tissue. To test this hyp...
متن کاملExtracoelenteric zooplankton feeding is a key mechanism of nutrient acquisition for the scleractinian coral Galaxea fascicularis.
Internal and external feeding on zooplankton may provide scleractinian corals with important nutrients. However, the latter process has never been properly quantified. To quantify the dynamics of zooplankton capture, digestion and release for a scleractinian coral, we performed detailed video analyses of Galaxea fascicularis feeding on Artemia nauplii. A highly dynamic process of prey capture, ...
متن کاملThe mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis
The mechanism of calcification and its relation to photosynthesis and respiration were studied with Ca, pH and O2 microsensors using the scleractinian coral Galaxea fascicularis. Gross photosynthesis (Pg), net photosynthesis (Pn) and dark respiration (DR) were measured on the surface of the coral. Light respiration (LR) was calculated from the difference between Pg and Pn. Pg was about seven ti...
متن کاملEpizoic acoelomorph flatworms impair zooplankton feeding by the scleractinian coral Galaxea fascicularis
Many scleractinian coral species host epizoic acoelomorph flatworms, both in aquaculture and in situ. These symbiotic flatworms may impair coral growth and health through light-shading, mucus removal and disruption of heterotrophic feeding. To quantify the effect of epizoic flatworms on zooplankton feeding, we conducted video analyses of single polyps of Galaxea fascicularis (Linnaeus 1767) gra...
متن کاملCarbon and Oxygen Isotope Fractionation in ScleracUnian Corals: a Review
Swart, P.K., 1983. Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth-Sci. Rev., 19: 51-80. The present theories on the fractionation of stable isotopes in scleractinian corals are critically discussed in the light of data available on primary productivity, respiration and stable isotope chemistry. These data support a model of fractionation in which the carbon and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of experimental biology
دوره 220 Pt 12 شماره
صفحات -
تاریخ انتشار 2017