Matrix Convex Functions With Applications to Weighted Centers for Semidefinite Programming

نویسندگان

  • Jan Brinkhuis
  • Zhi-Quan Luo
  • Shuzhong Zhang
چکیده

In this paper, we develop various calculus rules for general smooth matrix-valued functions and for the class of matrix convex (or concave) functions first introduced by Löwner and Kraus in 1930s. Then we use these calculus rules and the matrix convex function − log X to study a new notion of weighted centers for semidefinite programming (SDP) and show that, with this definition, some known properties of weighted centers for linear programming can be extended to SDP. We also show how the calculus rules for matrix convex functions can be used in the implementation of barrier methods for optimization problems involving nonlinear matrix functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Matrix Functions and Weighted Centers for Semidefinite Programming

In this paper, we develop various differentiation rules for general smooth matrix-valued functions, and for the class of matrix convex (or concave) functions first introduced by Löwner and Kraus in the 1930s. For a matrix monotone function, we present formulas for its derivatives of any order in an integral form. Moreover, for a general smooth primary matrix function, we derive a formula for al...

متن کامل

A Weighted Analytic Center for Linear Matrix Inequalities

Let R be the convex subset of IR defined by q simultaneous linear matrix inequalities (LMI) A 0 + ∑n i=1 xiA (j) i 0, j = 1, 2, . . . , q. Given a strictly positive vector ω = (ω1, ω2, · · · , ωq), the weighted analytic center xac(ω) is the minimizer argmin (φω(x)) of the strictly convex function φω(x) = ∑q j=1 ωj log det[A (j)(x)]−1 over R. We give a necessary and sufficient condition for a po...

متن کامل

The Boundary of Weighted Analytic Centers for Linear Matrix Inequalities

We study the boundary of the region of weighted analytic centers for linear matrix inequality constraints. Let be the convex subset of R defined by q simultaneous linear matrix inequalities (LMIs) A(x) := A 0 + n ∑ i=1 xiA (j) i 0, j = 1, 2, . . . , q, where A i are symmetric matrices and x ∈ R. Given a strictly positive vector ω = (ω1, ω2, . . . , ωq), the weighted analytic center xac(ω) is th...

متن کامل

Orthogonal Invariance and Identifiability

Matrix variables are ubiquitous in modern optimization, in part because variational properties of useful matrix functions often expedite standard optimization algorithms. Convexity is one important such property: permutation-invariant convex functions of the eigenvalues of a symmetric matrix are convex, leading to the wide applicability of semidefinite programming algorithms. We prove the analo...

متن کامل

Singular values of convex functions of matrices

‎Let $A_{i},B_{i},X_{i},i=1,dots,m,$ be $n$-by-$n$ matrices such that $‎sum_{i=1}^{m}leftvert A_{i}rightvert ^{2}$ and $‎sum_{i=1}^{m}leftvert B_{i}rightvert ^{2}$  are nonzero matrices and each $X_{i}$ is‎ ‎positive semidefinite‎. ‎It is shown that if $f$ is a nonnegative increasing ‎convex function on $left[ 0,infty right) $ satisfying $fleft( 0right)‎ ‎=0 $‎, ‎then  $$‎2s_{j}left( fleft( fra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005