Lateral mobility of L-type calcium channels in synaptic terminals of retinal bipolar cells
نویسندگان
چکیده
PURPOSE Efficient and precise release of glutamate from retinal bipolar cells is ensured by the positioning of L-type Ca(2+) channels close to release sites at the base of the synaptic ribbon. We investigated whether Ca(2+) channels at bipolar cell ribbon synapses are fixed in position or capable of moving in the membrane. METHODS We tracked the movements of individual L-type Ca(2+) channels in bipolar cell terminals after labeling channels with quantum dots (QDs) attached to α(2)δ(4) accessory Ca(2+) channel subunits via intermediary antibodies. RESULTS We found that individual Ca(2+) channels moved within a confined domain of 0.13-0.15 μm(2) in bipolar cell terminals, similar to ultrastructural estimates of the surface area of the active zone beneath the ribbon. Disruption of actin expanded the confinement domain indicating that cytoskeletal interactions help to confine channels at the synapse, but the relatively large diffusion coefficients of 0.3-0.45 μm(2)/s suggest that channels are not directly anchored to actin. Unlike photoreceptor synapses, removing membrane cholesterol did not change domain size, indicating that lipid rafts are not required to confine Ca(2+) channels at bipolar cell ribbon synapses. CONCLUSIONS The ability of Ca(2+) channels to move within the presynaptic active zone suggests that regulating channel mobility may affect release from bipolar cell terminals.
منابع مشابه
Modeling the response of ON and OFF retinal bipolar cells during electric stimulation
Retinal implants allowing blind people suffering from diseases like retinitis pigmentosa and macular degeneration to regain rudimentary vision are struggling with several obstacles. One of the main problems during external electric stimulation is the co-activation of the ON and OFF pathways which results in mutual impairment. In this study the response of ON and OFF cone retinal bipolar cells d...
متن کاملSynaptic mechanisms of bipolar cell terminals
Giant synaptic terminals of goldfish bipolar neurons allow direct studies of presynaptic mechanisms underlying neurotransmitter release and its modulation. Calcium influx via L-type calcium channels of the terminal triggers synaptic vesicle exocytosis, which can be monitored in isolated terminals by means of the associated changes in membrane capacitance. Information about the kinetics and calc...
متن کاملInvolvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملInvolvement of voltage-dependent calcium channels in synaptic plasticity of the rat visual cortex
In this study, involvement ofvoltage-dependent calcium channels in LTP of responses of rat visual cortex slices was analyzed. Field potentials including EPSP1 and EPSP2 from layers II/III were recorded through stimulation of layer IV. Whereas nifedipine, a L-type calcium channel blocker (L-VDCC), did not considerably affect the LTP of responses, but Ni2+, a relatively selective blocker of T-typ...
متن کاملRegulation of structural plasticity by different channel types in rod and cone photoreceptors.
In response to retinal disease and injury, the axon terminals of rod photoreceptors demonstrate dramatic structural plasticity, including axonal retraction, neurite extension, and the development of presynaptic varicosities. Cone cell terminals, however, are relatively inactive. Similar events are observed in primary cultures of salamander photoreceptors. To investigate the mechanisms underlyin...
متن کامل