Discriminative Hierarchical Part-Based Models for Human Parsing and Action Recognition

نویسندگان

  • Yang Wang
  • Duan Tran
  • Zicheng Liao
  • David A. Forsyth
چکیده

We consider the problem of parsing human poses and recognizing their actions in static images with part-based models. Most previous work in part-based models only considers rigid parts (e.g., torso, head, half limbs) guided by human anatomy. We argue that this representation of parts is not necessarily appropriate. In this paper, we introduce hierarchical poselets—a new representation for modeling the pose configuration of human bodies. Hierarchical poselets can be rigid parts, but they can also be parts that cover large portions of human bodies (e.g., torso + left arm). In the extreme case, they can be the whole bodies. The hierarchical poselets are organized in a hierarchical way via a structured model. Human parsing can be achieved by inferring the optimal labeling of this hierarchical model. The pose information captured by this hierarchical model can also be used as a intermediate representation for other high-level tasks. We demonstrate it in action recognition from static images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mental Arithmetic Task Recognition Using Effective Connectivity and Hierarchical Feature Selection From EEG Signals

Introduction: Mental arithmetic analysis based on Electroencephalogram (EEG) signal for monitoring the state of the user’s brain functioning can be helpful for understanding some psychological disorders such as attention deficit hyperactivity disorder, autism spectrum disorder, or dyscalculia where the difficulty in learning or understanding the arithmetic exists. Most mental arithmetic recogni...

متن کامل

An improved joint model: POS tagging and dependency parsing

Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...

متن کامل

A Generative Parser with a Discriminative Recognition Algorithm

Generative models defining joint distributions over parse trees and sentences are useful for parsing and language modeling, but impose restrictions on the scope of features and are often outperformed by discriminative models. We propose a framework for parsing and language modeling which marries a generative model with a discriminative recognition model in an encoder-decoder setting. We provide...

متن کامل

Erc Consolidator Grant 2013 Research Proposal [part B1] Ubiquitous, Spatiotemporal, Multimodal Action Recognition Act Now

Action and activity recognition lie at the core of a panoply of scenarios in human machine interaction, ranging from gaming, mobile computing and video retrieval to health monitoring, surveillance, robotics and biometrics. The problem, however, is made really challenging by the inherent variability of motions carrying the same meaning, the unavoidable over-fitting due to limited training sets, ...

متن کامل

Discriminative human action recognition in the learned hierarchical manifold space

In this paper, we propose a hierarchical discriminative approach for human action recognition. It consists of feature extraction with mutual motion pattern analysis and discriminative action modeling in the hierarchical manifold space. Hierarchical Gaussian Process Latent Variable Model (HGPLVM) is employed to learn the hierarchical manifold space in which motion patterns are extracted. A casca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2012