Robust adaptive Metropolis algorithm with coerced acceptance rate

نویسنده

  • Matti Vihola
چکیده

The adaptive Metropolis (AM) algorithm of Haario, Saksman and Tamminen [Bernoulli 7 (2001) 223-242] uses the estimated covariance of the target distribution in the proposal distribution. This paper introduces a new robust adaptive Metropolis algorithm estimating the shape of the target distribution and simultaneously coercing the acceptance rate. The adaptation rule is computationally simple adding no extra cost compared with the AM algorithm. The adaptation strategy can be seen as a multidimensional extension of the previously proposed method adapting the scale of the proposal distribution in order to attain a given acceptance rate. The empirical results show promising behaviour of the new algorithm in an example with Student target distribution having no finite second moment, where the AM covariance estimate is unstable. Furthermore, in the examples with finite second moments, the performance of the new approach seems to be competitive with the AM algorithm combined with scale adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Simple and Robust Mutation Strategy for the Metropolis Light Transport Algorithm

This paper presents a new mutation strategy for the Metropolis light transport algorithm, which works in the unit cube of pseudo-random numbers instead of mutating in the path space. This transformation makes the integrand have lower variation and thus increases the acceptance probability of the mutated samples. Higher acceptance ratio, in turn, reduces the correlation of the samples, which inc...

متن کامل

Umacs: A Universal Markov Chain Sampler

Umacs (Universal Markov chain sampler) is an R software package that facilitates the construction of the Gibbs sampler and Metropolis algorithm for Bayesian inference. Umacs is a practical tool to write samplers in R. This is sometimes necessary for large problems that cannot be fit using programs like BUGS. The user supplies the data, parameter names, updating functions, and a procedure for ge...

متن کامل

On the Stability and Ergodicity of an Adaptive Scaling Metropolis Algorithm

The stability and ergodicity properties of an adaptive random walk Metropolis algorithm are considered. The algorithm adjusts the scale of the symmetric proposal distribution continuously based on the observed acceptance probability. Unlike the previously proposed forms of this algorithm, the adapted scaling parameter is not constrained within a predefined compact interval. This makes the algor...

متن کامل

A Robust Distributed Estimation Algorithm under Alpha-Stable Noise Condition

Robust adaptive estimation of unknown parameter has been an important issue in recent years for reliable operation in the distributed networks. The conventional adaptive estimation algorithms that rely on mean square error (MSE) criterion exhibit good performance in the presence of Gaussian noise, but their performance drastically decreases under impulsive noise. In this paper, we propose a rob...

متن کامل

Optimal Acceptance Rates for Metropolis Algorithms: Moving Beyond 0.234

Recent optimal scaling theory has produced a condition for the asymptotically optimal acceptance rate of Metropolis algorithms to be the well-known 0.234 when applied to certain multidimensional target distributions. These d-dimensional target distributions are formed of independent components, each of which is scaled according to its own function of d. We show that when the condition is not me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Statistics and Computing

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2012