PCSK9 siRNA suppresses the inflammatory response induced by oxLDL through inhibition of NF-κB activation in THP-1-derived macrophages.
نویسندگان
چکیده
Proprotein convertase subtilisin/kexin 9 (PCSK9), a member of the protein-converting enzyme family, is highly expressed in adult hepatocytes and small intestinal enterocytes. To our knowledge, in this study, we demonstrate for the first time that PCSK9 is upregulated in a dose-dependent manner via oxidized low-density lipoprotein (oxLDL) stimulation in THP-1-derived macrophages. PCSK9 small interfering RNA (siRNA) suppresses the oxLDL-induced inflammatory cytokine expression in THP-1-derived macrophages. The exposure of macrophages to oxLDL markedly increased the expression of NF-κB protein in the nucleus. However, this effect was significantly attenuated by PCSK9 siRNA. These findings indicate that PCSK9 expression is induced by oxLDL, and that PCSK9 siRNA protects against inflammation via the inhibition of NF-κB activation in oxLDL-stimulated THP-1-derived macrophages. Our results suggest that PCSK9 may be used as a therapeutic target for the treatment of atherosclerosis since PCSK9 siRNA suppresses oxLDL-induced IκB-α degradation and NF-κB nuclear translocation into THP-1-derived macrophages.
منابع مشابه
Oxidized Low-Density Lipoprotein Suppresses Expression of Prostaglandin E Receptor Subtype EP3 in Human THP-1 Macrophages
EP3, one of four prostaglandin E2 (PGE2) receptors, is significantly lower in atherosclerotic plaques than in normal arteries and is localized predominantly in macrophages of the plaque shoulder region. However, mechanisms behind this EP3 expression pattern are still unknown. We investigated the underlying mechanism of EP3 expression in phorbol 12-myristate 13-acetate (PMA)-differentiated THP-1...
متن کاملL-cystathionine inhibits oxidized low density lipoprotein-induced THP-1-derived macrophage inflammatory cytokine monocyte chemoattractant protein-1 generation via the NF-κB pathway
This study aimed to explore whether and how L-cystathionine had any regulatory effect on the inflammatory response in THP-1-derived macrophages cultured in vitro under oxidized low-density lipoprotein (ox-LDL) stimulation. The human monocyte line THP-1 cell was cultured in vitro and differentiated into macrophages after 24 hours of PMA induction. Macrophages were pretreated with L-cystathionine...
متن کاملInhibition of Hydrogen Sulfide Production by Gene Silencing Attenuates Inflammatory Activity by Downregulation of NF-κB and MAP Kinase Activity in LPS-Activated RAW 264.7 Cells
Hydrogen sulfide is an endogenous inflammatory mediator produced by the activity of cystathionine γ-lyase (CSE) in macrophages. The objective of this study was to explore the mechanism by which hydrogen sulfide acts as an inflammatory mediator in lipopolysaccharide- (LPS-) induced macrophages. In this study, we used small interfering RNA (siRNA) to inhibit CSE expression in macrophages. We foun...
متن کاملReactive oxygen species mediate TNF-α-induced inflammatory response in bone marrow mesenchymal cells
Objective(s): It is generally believed that the inflammatory response in bone marrow mesenchymal stem cells (BMSCs) transplantation leads to poor survival and unsatisfactory effects, and is mainly mediated by cytokines, including interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α). In this study, we explored the mechanisms underlying the TNF-α-induced inflammatory ...
متن کامل25-Hydroxycholesterol-3-sulfate attenuates inflammatory response via PPARγ signaling in human THP-1 macrophages.
The nuclear receptor peroxisome proliferator-activated receptors (PPARs) are important in regulating lipid metabolism and inflammatory responses in macrophages. Activation of PPARγ represses key inflammatory response gene expressions. Recently, we identified a new cholesterol metabolite, 25-hydroxycholesterol-3-sulfate (25HC3S), as a potent regulatory molecule of lipid metabolism. In this paper...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2012