Mitochondrially localized EGFR is independent of its endocytosis and associates with cell viability.
نویسندگان
چکیده
The molecular mechanism underlying epidermal growth factor receptor (EGFR) localization in mitochondria remains largely unknown. Using immune electron microscopy, we validated that EGFR could be localized on either the outer or the inner membrane of mitochondria. Mutant receptor lacked amino acids 646-660 was flawed in migration onto the organelles, whereas the mutated receptor with a defective endocytosis showed a greater capability of moving onto mitochondria upon stimulation of epidermal growth factor (EGF). Gefitinib, an inhibitor of EGFR kinase, inhibited the receptor endocytosis after short time of treatment, yet, only reduced cell viability as well as the amount of mitochondrial EGFR after longer time of exposure. Moreover, the content of mitochondrial EGFR transfer was decreased when the cells were exposed to the apoptotic inducer etoposide. EGF-induced programmed cell death usually coincided with a decline in mitochondrial EGFR. These data indicated that the mitochondrial-localized EGFR is independent of its internalization and may be correlated with cell survival and participate in the ligand-induced programmed cell death.
منابع مشابه
Non-Ligand-Induced Dimerization is Sufficient to Initiate the Signalling and Endocytosis of EGF Receptor
The binding of epidermal growth factor (EGF) to EGF receptor (EGFR) stimulates cell mitogenesis and survival through various signalling cascades. EGF also stimulates rapid EGFR endocytosis and its eventual degradation in lysosomes. The immediate events induced by ligand binding include receptor dimerization, activation of intrinsic tyrosine kinase and autophosphorylation. However, in spite of i...
متن کاملEGFR endocytosis is a novel therapeutic target in lung cancer with wild-type EGFR
Oncogenic alterations of epidermal growth factor receptor (EGFR) signaling are frequently observed in lung cancer patients with worse differentiation and poor prognosis. However, the therapeutic efficacy of EGFR-tyrosine kinase inhibitors (TKIs) is currently limited in selected patients with EGFR mutations. Therefore, in this study, we investigated the potential molecular mechanism that contrib...
متن کاملThe S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .
Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...
متن کاملEpidermal Growth Factor Receptor Expression in Oral Squamous Cell Carcinoma by Immunohistochemical Technique and its Correlation with Clinicopathological Features
Background:Oral squamous cell carcinoma (OSCC) is the most common malignancy of the oral cavity. Despite some improvements in treatment, the survival rate is still very low, mainly due to the possible development of secondary malignancy or metastasis. Clinical and pathological features as well as molecular biomarkers might predict the recurrence. In recent years, many studies ...
متن کاملMitochondrially localized EGFR is subjected to autophagic regulation and implicated in cell survival.
Although generally acknowledged as a plasma membrane protein, the epidermal growth factor (EGF) receptor has been found in the nucleus and subcellular organelles. Recently, the mitochondrial localization of the EGF receptor (EGFR) was reported; nevertheless, the molecular mechanism underlying EGFR localization in mitochondria is largely unknown. Using immunofluorescence and immunoelectron micro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biochimica et biophysica Sinica
دوره 42 11 شماره
صفحات -
تاریخ انتشار 2010