Comparative Calibration of Heat Flux Sensors in Two Blackbody Facilities

نویسندگان

  • A. V. Murthy
  • B. K. Tsai
  • R. D. Saunders
چکیده

National Institute of Standards and Technology, Gaithersburg, MD 20899-0001 This paper presents the results of heat flux sensor calibrations in two blackbody facilities: the 25 mm variable temperature blackbody (VTBB) primary facility and a recently developed 51 mm aperture spherical blackbody (SPBB) facility. Three Schmidt-Boelter gages and a Gardon gage were calibrated with reference to an electrical substitution radiometer in the VTBB. One of the Schmidt-Boelter gages thus calibrated was used as a reference standard to calibrate other gages in the SPBB. Comparison of the SchmidtBoelter gages calibrations in the SPBB and the VTBB agreed within the measurement uncertainties. For the Gardon gage, the measured responsivity in the SPBB showed a gradual decrease with increasing distance from the aperture. When the gage was located close to the aperture, a distance less than the aperture radius, the responsivity in the SPBB agreed with VTBB measurements. At a distance of about three times the aperture radius, the responsivity showed a decrease of about 4 %. This is probably due to higher convection loss from the Gardon gage surface compared to the Schmidt-Boelter sensor.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Radiative Calibration of Heat-Flux Sensors at NIST: Facilities and Techniques

We present an overview of the National Institute of Standards and Technology high temperature blackbodies, both in operation and in development, suitable for heat-flux sensor calibration. Typical results of calibrations using the transfer technique in the 25 mm Variable-Temperature Blackbody are presented to demonstrate the long-term repeatability of the calibration technique. A comparative stu...

متن کامل

Calibration of High Heat Flux Sensors at NIST

An ongoing program at the National Institute of Standards and Technology (NIST) is aimed at improving and standardizing heat-flux sensor calibration methods. The current calibration needs of U.S. science and industry exceed the current NIST capability of 40 kW/m2 irradiance. In achieving this goal, as well as meeting lower-level non-radiative heat flux calibration needs of science and industry,...

متن کامل

Transfer Calibration Validation Tests on a Heat Flux Sensor in the 51 mm High-Temperature Blackbody

Facilities and techniques to characterize heat flux sensors are under development at the National Institute of Standards and Technology. As a part of this effort, a large aperture high-temperature blackbody was commissioned recently. The graphite tube blackbody, heated electrically, has a cavity diameter of 51 mm and can operate up to a maximum temperature of 2773 K. A closed-loop cooling syste...

متن کامل

Simultaneous estimation of heat fluxes applied to the wall of a channel with turbulent flow using inverse analysis

The main purpose of this study is to estimate the step heat fluxes applied to the wall of a two-dimensional symmetric channel with turbulent flow. For inverse analysis, conjugate gradient method with adjoint problem is used. In order to calculate the flow field,   two equation model is used. In this study, adjoint problem is developed to conduct an inverse analysis of heat transfer in a channel...

متن کامل

Thermal Product of Fast Response Temperature Sensors for Transient Heat Transfer Applications with Numerically Determined Surface Heat Flux History

A dynamic calibration technique for evaluating the thermal product values of different scratched temperature sensors is presented. These sensors have renewable junction, fast response time and it can be used for transient heat transfer measurements in hypersonic vehicles. Two types of scratch were used, mainly abrasive papers with different grit sizes and scalpel blades with different thickness...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 104  شماره 

صفحات  -

تاریخ انتشار 1999