Glycosaminoglycan Monosaccharide Blocks Analysis by Quantum Mechanics, Molecular Dynamics, and Nuclear Magnetic Resonance
نویسندگان
چکیده
Glycosaminoglycans (GAGs) play an important role in many biological processes in the extracellular matrix. In a theoretical approach, structures of monosaccharide building blocks of natural GAGs and their sulfated derivatives were optimized by a B3LYP6311ppdd//B3LYP/6-31+G(d) method. The dependence of the observed conformational properties on the applied methodology is described. NMR chemical shifts and proton-proton spin-spin coupling constants were calculated using the GIAO approach and analyzed in terms of the method's accuracy and sensitivity towards the influence of sulfation, O1-methylation, conformations of sugar ring, and ω dihedral angle. The net sulfation of the monosaccharides was found to be correlated with the (1)H chemical shifts in the methyl group of the N-acetylated saccharides both theoretically and experimentally. The ω dihedral angle conformation populations of free monosaccharides and monosaccharide blocks within polymeric GAG molecules were calculated by a molecular dynamics approach using the GLYCAM06 force field and compared with the available NMR and quantum mechanical data. Qualitative trends for the impact of sulfation and ring conformation on the chemical shifts and proton-proton spin-spin coupling constants were obtained and discussed in terms of the potential and limitations of the computational methodology used to be complementary to NMR experiments and to assist in experimental data assignment.
منابع مشابه
Low molecular weight heparins: structural differentiation by bidimensional nuclear magnetic resonance spectroscopy.
Individual low molecular weight heparins (LMWHs) exhibit distinct pharmacological and biochemical profiles because of manufacturing differences. Correlation of biological properties with particular structural motifs is a major challenge in the design of new LMWHs as well as in the development of generic versions of proprietary LMWHs. Two-dimensional nuclear magnetic resonance (NMR) spectroscopy...
متن کاملNuclear Magnetic Resonance: An Introduction
Nuclear magnetic resonance or NMR is one of the most widely used discoveries of Modern Physics. NMR is based on the bulk magnetic properties of materials made up of certain isotopes, most notably, protons (1H), but encompassing a wide variety of species including C, F, and Si. NMR is used to measure magnetic fields with exquisite precision. NMR is used in chemical analysis, oil exploration, and...
متن کاملComputational Investigation on Naphthoquinone Derivatives :Nuclear Magnetic Resonance (NMR) and Quantum mechanic
Naphthoquinones are natural aromatic compounds that can be discovered in various plant families. In recent times a diversity of biological activities of these compounds has been reported. In most cases, these pharmacological activities are related to redox and acid-base properties, which can be modulated synthetically by modifying the substituents attached to the 1, 4- naphthoquinone ring, in o...
متن کاملStatic and dynamic NMR properties of gas-phase xenon
This thesis presents computational studies of both the static and dynamic parameters of the nuclear magnetic resonance (NMR) spectroscopy of gaseous xenon. First, state-of-the-art static magnetic resonance parameters are computed in small xenon clusters by using methods of quantum chemistry, and second, time-dependent relaxation phenomena are investigated via molecular dynamics simulations at d...
متن کاملRetinyl Chromophore in Visual Rhodopsin
The H and C Nuclear Magnetic Resonance (NMR) spectra of the retinyl chromophore in rhodopsin are investigated by using Quantum Mechanics/Molecular Mechanics (QM/MM) hybrid methods at the Density Functional Theory (DFT) B3LYP/631G*:Amber level, in conjunction with the Gauge Independent Atomic Orbital (GIAO) method for the ab initio Self-Consistent-Field (SCF) calculation of NMR chemical shifts. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014